

Next Generation Higher National Unit
Specification
Software Engineering Methods (SCQF level 8)

Unit code: J7EF 48

SCQF level: 8 (24 SCQF credit points)

Valid from: session 2023–24

Prototype unit specification for use in pilot delivery
only (version 1.0) June 2023

This unit specification provides detailed information about the unit to ensure consistent and
transparent assessment year on year.

This unit specification is for teachers and lecturers and contains all the mandatory
information required to deliver and assess the unit.

The information in this unit specification may be reproduced in support of SQA qualifications
only on a non-commercial basis. If it is reproduced, SQA must be clearly acknowledged as
the source. If it is to be reproduced for any other purpose, written permission must be
obtained from permissions@sqa.org.uk.

This edition: June 2023 (version 1.0)

© Scottish Qualifications Authority 2023

mailto:permissions@sqa.org.uk

NextGen: HN published prototype unit specification for use in pilot delivery only (version 1.0)
June 2023

1

Unit purpose
This unit is for learners who have an interest in applying engineering design to the
development of software solutions. This is a specialist unit, which is particularly relevant to
learners studying software development. While learners do not need prior knowledge of
software engineering principles, it is essential that they have experience of designing and
developing software solutions. They can evidence this through units such as Software
Development at SCQF level 8 or Database Design and Development at SCQF level 8.

During the unit, learners gain knowledge and understanding of the software development
lifecycle (SDLC), software models, and the tools and design patterns that satisfy industry
standards for the delivery of software projects in a business environment. They discover
client requirements and perform requirements analysis to produce a software requirements
document. They also select an appropriate software model and create a software design for
a given software requirement. They represent this design using Unified Modeling Language
(UML) or a similar language. Learners participate in design reviews and create test cases for
a given software system.

The unit is included in the framework for the HND Software Development. On completion of
the unit, learners may progress to other units in software engineering or software
development at SCQF level 8 and above.

NextGen: HN published prototype unit specification for use in pilot delivery only (version 1.0)
June 2023

2

Unit outcomes
Learners who complete this unit can:

1 describe software management activities related to the modern software development

lifecycle
2 explain the techniques supporting modern software engineering methods
3 define and analyse systems requirements and specify a system design to deliver these

requirements
4 define and justify an architectural design style and pattern for a given systems design
5 design UML models to represent structural and behavioural aspects of a software system
6 illustrate various software testing strategies used in real-world projects
7 perform verification and validation of a software system design in relation to the

functionality, usability, reliability, performance, and supportability (FURPS) criteria

Evidence requirements
Learners must provide knowledge evidence and product evidence.

Knowledge evidence
The knowledge evidence must demonstrate that the learner has an understanding of the
knowledge specified in the ‘Knowledge and skills’ section. Learners can provide evidence in
a report or a presentation. Knowledge evidence can also be produced by a question paper
that samples from each of the elements of software engineering:

♦ software development lifecycle process models:
♦ software requirement specification
♦ requirements gathering: approaches and outputs
♦ requirements analysis process:
♦ non-functional requirements
♦ system models
♦ patterns: architectural and design
♦ reference architectures
♦ user interface (UI) design
♦ requirements validation
♦ design reviews
♦ software testing
♦ code quality review
♦ software quality models

NextGen: HN published prototype unit specification for use in pilot delivery only (version 1.0)
June 2023

3

Product evidence
Learners demonstrate that they can successfully apply software engineering methods and
tools to a range of real-world problems. They must evidence all the skills listed in the
‘Knowledge and skills’ section, covering the gamut of methods and processes from
establishing software requirements to the design and validation of a software solution.

Learners can produce evidence over an extended period in lightly-controlled conditions or
generate it holistically in conjunction with other units in a group award. Evidence produced in
lightly-controlled conditions must be authenticated. The Guide to Assessment provides
further advice on methods of authentication.

The standard of evidence should be consistent with the SCQF level of the unit.

https://www.sqa.org.uk/files_ccc/Guide_To_Assessment.pdf

NextGen: HN published prototype unit specification for use in pilot delivery only (version 1.0)
June 2023

4

Knowledge and skills
The following table shows the knowledge and skills covered by the unit outcomes:

Knowledge Skills

Learners should understand:

♦ software development lifecycle process

models:
— Waterfall
— Agile
— Spiral
— Prototyping
— RAD
— Scrum

♦ software requirement specifications
— business requirements
— system requirements
— functional and non-functional

requirements
— interface requirements

♦ requirements gathering
— stakeholders
— use-cases
— user stories

♦ requirements analysis process
— modelling
— functions
— behaviours

♦ non-functional requirements
— security
— capacity
— reliability
— compatibility
— scalability
— maintainability
— usability

♦ software requirements analysis
— system constraints
— risk

Learners can:

♦ discover requirements from a client

consultation and create a requirements
document with use cases

♦ define and analyse systems
requirements

♦ specify and document a system design
to deliver requirements

♦ define and justify an architectural design
style and pattern for a given systems
design

♦ design UML models to represent
structural and behavioural aspects of a
software system

♦ illustrate various software testing
strategies used in real-world projects

♦ perform verification and validation of a
software system design in relation to the
FURPS criteria

NextGen: HN published prototype unit specification for use in pilot delivery only (version 1.0)
June 2023

5

Knowledge Skills

Learners should understand:

♦ system models

— analysis
— design
— context
— data
— object
— behavioural

♦ structured analysis
— data flow diagrams (DFDs)
— DFD levels
— data dictionaries

♦ entity relationship diagrams (ERDs):
— data objects and entities
— data attributes
— relationships
— cardinality
— modality

♦ architectural design
♦ control styles
♦ patterns

— architectural
— design
— idiom

♦ reference architectures (patterns):
— data-centred
— data flow
— call and return
— object-oriented
— layered

♦ architecture description language (ADL)
— requirements
— benefits
— problems
— UML as an ADL
— use of XML-based architecture

description language (xADL)

NextGen: HN published prototype unit specification for use in pilot delivery only (version 1.0)
June 2023

6

Knowledge Skills

Learners should understand:

♦ patterns

— MVC
— singleton
— observer
— decorator

♦ principles of software design
— abstraction
— modularity
— information hiding
— stepwise refinement
— refactoring

♦ horizontal versus vertical partitioning
♦ concurrency
♦ user interface design
♦ verification and validation
♦ requirements validation

— review team
— checklist for consistency
— omissions
— ambiguity

♦ design reviews
— conceptual
— critical
— program (static)

♦ software testing
— component
— integration
— system
— test case design
— test automation

♦ validation of reliability and security
♦ software quality

NextGen: HN published prototype unit specification for use in pilot delivery only (version 1.0)
June 2023

7

Knowledge Skills

Learners should understand:

♦ ISO/IEC 25010:2011 standard (FURPS)

— functional suitability
— reliability
— operability
— performance efficiency
— security
— compatibility
— maintainability
— transferability

♦ code quality review
— readability
— maintainability
— coding standards
— linting tools

♦ quality models
— McCall
— Boehm
— Dromey

NextGen: HN published prototype unit specification for use in pilot delivery only (version 1.0)
June 2023

8

Meta-skills
Throughout the unit, learners develop meta-skills to enhance their employability in the
computing sector.

The unit helps learners develop the meta-skills of self-management, social intelligence and
innovation. Learners should develop meta-skills naturally throughout the unit. You should
encourage learners to develop a minimum of one area in each of the three categories, but
they do not need to cover all the suggested subsection. The following suggestions may help
shape delivery and assessment, and vary depending on the chosen topics and assessment
method.

Self-management
This meta-skill includes:

♦ focusing: demonstrating the attention to detail that developing program code and syntax

demands and that is crucial to successful coding practices
♦ adapting: reflecting critically on the processes of software engineering; self-learning
♦ initiative: displaying independent thinking; demonstrating the self-motivation,

responsibility and decision making required at each stage in the selected software
engineering methodology

Social intelligence
This meta-skill includes:

♦ communicating: receiving information; obtaining user requirements and verifying software

designs
♦ collaborating: listening and conveying information
♦ leading: being a change catalyst

Innovation
This meta-skill includes:

♦ curiosity: information sourcing; recognising problems and devising solutions
♦ creativity: demonstrating a maker mentality; being imaginative; visualising
♦ sense-making: pattern recognition; holistic thinking; careful analysis of requirements
♦ critical thinking: logical and computational thinking; deconstruction of data objects;

judgement

NextGen: HN published prototype unit specification for use in pilot delivery only (version 1.0)
June 2023

9

Delivery of unit
You can deliver this unit in conjunction with Software Development at SCQF level 8. This
provides practical activities to help understanding of the concepts presented in the unit.

Alternatively, you can build delivery and assessment around an extended case study that
offers sufficient complexity to give learners exposure to different approaches. You can
expose learners to a range of software requirements, allowing them to consider the range of
software engineering processes and experience their application.

Learning should be as learner-centred as possible, and you should take the role of client,
coach or mentor as appropriate and provide guidance, resources and advice.

The sequencing of the unit should follow the pattern of most SDLC models:

♦ requirements gathering
♦ analysis
♦ design
♦ validation and verification
♦ software production and testing

The time required varies depending on the previous experience of individual learners.
Based on 120 hours delivery and assessment time, we suggest the following distribution:

Outcome 1 — Describe software management activities related to the modern software

development lifecycle
(15 hours)

Outcome 2 — Explain the techniques supporting modern software engineering methods
(10 hours)

Outcome 3 — Define and analyse systems requirements and specify a system design to
deliver these requirements
(30 hours)

Outcome 4 — Define and justify an architectural design style and pattern for a given
systems design
(25 hours)

Outcome 5 — Design UML models to represent structural and behavioural aspects of a
software system
(15 hours)

Outcome 6 — Illustrate various software testing strategies used in real-world projects
(15 hours)

Outcome 7 — Perform verification and validation of a software system design in relation to
the FURPS criteria
(10 hours)

NextGen: HN published prototype unit specification for use in pilot delivery only (version 1.0)
June 2023

10

Additional guidance
The guidance in this section is not mandatory.

Content and context for this unit
The general context for the unit is for learners to apply software engineering principles, and
to develop a significant software solution to a set of user requirements.

Start the unit with an overview of the SDLC and activities, including requirements gathering
and analysis, design, development, testing, deployment, maintenance, and retirement.

You should describe and compare the range of process options for software development,
including Waterfall, Agile, Spiral, Prototyping, RAD, and Scrum. You should provide
examples of their operation.

Introduce the requirements-gathering process and give learners the opportunity to practice
discovering, prioritising, documenting and validating requirements. You should emphasise
the importance of documenting requirements. Discuss the relevance of non-functional
requirements to the success of a software solution, including performance, security, and
usability.

This leads to the analysis of these requirements and their representation using UML or
equivalent, and forms the basis for subsequent validation exercises. You should introduce
UML as a general-purpose modelling language and present the choice of diagram types in
UML, with examples of their use. Diagram types should include sequence, class, state
machine, activity, and component.

Learners should apply the structured analysis process to examples of requirements,
including decomposition, data modelling, and process modelling. They should see examples
of horizontal and vertical partitioning. Learners should become familiar with DFDs and ERDs.

At this stage, learners are ready to verify and validate their system design against functional
and non-functional requirements, and other assumptions or constraints. Validating the design
involves the client, while verifying that the design is correct involves model-based verification.

Learners should understand that there is a range of architectural styles for software
development projects and that the choice of style is determined by functional and
non-functional requirements, the technology stack in use, other project constraints, and team
expertise. This leads them to consider common architectural styles, including monolithic,
microservices, event-driven, and layered. You should introduce the use of an architectural
design language, drawing on current practice.

Introduce the concept of a design pattern as a specific repeatable solution to a
commonly-occurring problem in software design, and give examples such as
Model-View-Controller (MVC), Model-View-View-Model (MVVM), observer and repository.

You should cover the basics of user-experience testing and its contribution to interface
design, and the range of strategies for testing, including unit testing, integration testing,
system testing, acceptance testing, performance testing, and regression testing. This should

NextGen: HN published prototype unit specification for use in pilot delivery only (version 1.0)
June 2023

11

lead on to test construction, test cases and automated testing. Learners should experience
static testing of some simple code fragments.

You should cover the concept of software quality, including aspects such as FURPS and
implementation. For common use, you should introduce McCall’s quality model, and refer to
Boehm’s and Dromey's quality models as alternatives.

Your delivery of the unit should engage learners in applying software engineering methods
and approaches to real-world problems. You should select these problems to ensure that
learners can apply as wide a range of methods as possible. For some practical work, it may
be more suitable for learners to work in pairs or other-sized groups.

For validation and verification exercises, you should act as the client or expert.

Practical activities
There are several approaches to helping learners to understand through practical activities,
such as linking the unit with Software Development at SCQF level 8. You could also consider
the following approaches:

Focus on hands-on projects
Assign practical projects that allow learners to apply software engineering principles in a
real-world context. This can include building a software system from scratch, or working on
an existing open-source project.

Use real-world examples
Use real-world examples of software engineering problems and solutions to help learners
understand how to apply theoretical concepts in practice. Share case studies and success
stories from industry to illustrate how software engineering principles are used in the real
world.

Include coding exercises
Provide coding exercises that allow learners to practice writing code using the software
engineering principles that you are teaching. These exercises can be based on the projects
that you assign, or they can be stand-alone exercises that focus on specific software
engineering concepts.

Use collaboration tools
Use collaboration tools like Git, GitHub, or Bitbucket to encourage collaboration among
learners. This helps them learn how to work together as a team and manage software
projects collaboratively.

Invite guest speakers
Invite industry professionals to speak to your class about their experiences working in
software engineering. This provides learners with a more realistic understanding of what it is
like to work as a software engineer and the challenges they might face.

NextGen: HN published prototype unit specification for use in pilot delivery only (version 1.0)
June 2023

12

Overall, the key is to create a curriculum that emphasises hands-on, practical experience
and provides learners with opportunities to apply the concepts they are learning in real-world
situations.

Software patterns
Here are some practical examples for learners to explore when studying software patterns:

Factory method pattern
Implement a simple web application that creates different types of objects based on user
input. For example, the application could create different types of documents (such as PDF,
Word, or HTML) based on user input.

Observer pattern
Implement a simple messaging application that allows users to subscribe to different chat
rooms. When a user sends a message to a chat room, all subscribers receive the message.

Singleton pattern
Implement a logging component that ensures only one instance of the logger is created
throughout the application. This can help to centralise logging and ensure that all logs are
captured consistently.

Adapter pattern
Implement a data conversion component that converts data from one format to another. For
example, the component could convert data from a comma-separated values (CSV) file to a
JavaScript Object Notation (JSON) format.

Decorator pattern
Implement a text formatting component that allows users to apply different formatting options
(such as bold, italic, or underline) to text. Learners can apply the formatting options
dynamically at runtime.

Software architectures
Here are some practical examples that can help learners understand the concept of software
architectures:

Client-server architecture
Build a simple web application that allows users to submit a form and store the data on a
server.

Microservices architecture
Build a simple e-commerce application that consists of separate services for catalogue
management, order processing, and payment processing.

NextGen: HN published prototype unit specification for use in pilot delivery only (version 1.0)
June 2023

13

Layered architecture
Build a simple create, read, update, delete (CRUD) application that separates the user
interface, business logic, and data access layers.

Event-driven architecture
Build a simple messaging application that allows users to send and receive messages in
real-time.

Service-oriented architecture
Build a simple weather application programming interface (API) that provides weather data to
other applications.

Software validation and verification
Here are some practical activities that can help learners understand software validation and
verification:

Test plan creation
Provide learners with a sample software system and ask them to create a test plan to verify
and validate the system. This can include designing test cases, identifying test data, and
determining success criteria.

Code inspection
Ask learners to review a piece of code and identify potential defects and errors. This can help
them understand how to use code inspection to identify and correct errors in software
systems.

User testing
Conduct a user testing session with a group of learners, using a sample software system.
Ask them to provide feedback on the usability, functionality, and reliability of the system. This
can help them understand how user testing can validate and verify software systems.

Bug fixing
Provide learners with a sample software system that contains bugs or defects. Ask them to
identify and fix the bugs, using a structured approach to debugging. This can help learners
understand how the verification and validation process is used to identify and correct errors
in software systems.

Requirements review
Provide learners with a set of software requirements and ask them to review the
requirements and identify potential inconsistencies or conflicts. This can help them
understand how to use the validation and verification process to ensure that software
systems meet the needs of stakeholders.

NextGen: HN published prototype unit specification for use in pilot delivery only (version 1.0)
June 2023

14

These practical activities can help learners understand the importance of software validation
and verification and how these processes ensure the quality and effectiveness of software
systems.

Approaches to assessment
You can obtain product evidence by setting a series of tasks that are based on actual user
requirements or existing software designs. Learners can gather product evidence in the form
of checklists or reports. Learners may also create presentations or demonstrations of
solutions to tasks.

However, our preferred method of obtaining product evidence is through an extended case
study or project brief that enables learners to demonstrate the full range of skills required in
the unit. You must provide feedback to learners that is authentic and constructive to the
objectives of their case study or project.

Learners can produce knowledge evidence by a question paper that samples the knowledge
evidence detailed in the ‘Evidence requirements’ section. Alternatively, they can produced it
in the form of reports or presentations, including research reports.

NextGen: HN published prototype unit specification for use in pilot delivery only (version 1.0)
June 2023

15

Equality and inclusion
This unit is designed to be as fair and as accessible as possible with no unnecessary barriers
to learning or assessment.

You should take into account the needs of individual learners when planning learning
experiences, selecting assessment methods or considering alternative evidence.

Guidance on assessment arrangements for disabled learners and/or those with additional
support needs is available on the assessment arrangements web page:
www.sqa.org.uk/assessmentarrangements.

http://www.sqa.org.uk/assessmentarrangements

NextGen: HN published prototype unit specification for use in pilot delivery only (version 1.0)
June 2023

16

Information for learners
Software Engineering Methods (SCQF level 8)
This information explains:

♦ what the unit is about
♦ what you should know or be able to do before you start
♦ what you need to do during the unit
♦ opportunities for further learning and employment

Unit information
This unit is for learners who have an interest in the application of engineering design
principles to the development of software solutions. This is a specialist unit, particularly
relevant to learners studying software development. While no prior knowledge of software
engineering principles is required, it is essential that you have experience of designing and
developing software solutions. You can evidence this through units such as Software
Development at SCQF level 8 or Database Design and Development at SCQF level 8.

In the unit, you gain knowledge and understanding of the software development lifecycle
(SDLC), software models, and the tools and design patterns that satisfy industry standards
for the delivery of software projects in a business environment. You discover and document
the business requirements of a client, perform analysis to produce a software requirements
document, and validate this against the business requirement.

You select appropriate software models and create software designs for a given software
requirement. You represent these designs using a modelling language such as Unified
Modeling Language (UML). You participate in design reviews and create test cases for a
given software system.

Your knowledge and understanding of software engineering concepts and approaches may
be assessed through various means, such as case studies, assignments, and question
papers. Your competence in establishing software requirements, conducting an analysis and
choosing an architectural style for the software design is assessed through product evidence.

Throughout the unit, you develop meta-skills covering self-management, social intelligence
and innovation. You will develop awareness of sustainability issues in the application of
computing solutions.

On completing the unit, you have the knowledge and competence to progress to other units
in software engineering or in software development methodologies at SCQF level 8 and
above.

NextGen: HN published prototype unit specification for use in pilot delivery only (version 1.0)
June 2023

17

Administrative information

Published: June 2023 (version 1.0)

Superclass: CB

History of changes

Version Description of change Date

Note: please check SQA’s website to ensure you are using the most up-to-date version of
this document.

© Scottish Qualifications Authority 2023

http://www.sqa.org.uk/nextgen

	Next Generation Higher National Unit Specification
	Software Engineering Methods (SCQF level 8)
	Unit code: J7EF 48
	SCQF level: 8 (24 SCQF credit points)
	Valid from: session 2023–24

	Prototype unit specification for use in pilot delivery only (version 1.0) June 2023
	Unit purpose
	Unit outcomes
	Evidence requirements
	Knowledge evidence
	Product evidence

	Knowledge and skills
	Meta-skills
	Self-management
	Social intelligence
	Innovation

	Delivery of unit
	Additional guidance
	Content and context for this unit
	Practical activities
	Focus on hands-on projects
	Use real-world examples
	Include coding exercises
	Use collaboration tools
	Invite guest speakers

	Software patterns
	Factory method pattern
	Observer pattern
	Singleton pattern
	Adapter pattern
	Decorator pattern

	Software architectures
	Client-server architecture
	Microservices architecture
	Layered architecture
	Event-driven architecture
	Service-oriented architecture

	Software validation and verification
	Test plan creation
	Code inspection
	User testing
	Bug fixing
	Requirements review

	Approaches to assessment

	Equality and inclusion
	Information for learners
	Software Engineering Methods (SCQF level 8)
	Unit information

	Skills
	Knowledge
	Administrative information
	History of changes

	Date
	Description of change
	Version

