

Next Generation Higher National Unit
Specification
Programming Paradigms (SCQF level 8)

Unit code: J7DY 48

SCQF level: 8 (16 SCQF credit points)

Valid from: session 2023–24

Prototype unit specification for use in pilot delivery
only (version 1.0) June 2023

This unit specification provides detailed information about the unit to ensure consistent and
transparent assessment year on year.

This unit specification is for teachers and lecturers and contains all the mandatory
information required to deliver and assess the unit.

The information in this unit specification may be reproduced in support of SQA qualifications
only on a non-commercial basis. If it is reproduced, SQA must be clearly acknowledged as
the source. If it is to be reproduced for any other purpose, written permission must be
obtained from permissions@sqa.org.uk.

This edition: June 2023 (version 1.0)

© Scottish Qualifications Authority 2023

mailto:permissions@sqa.org.uk

NextGen: HN published prototype unit specification for use in pilot delivery only (version 1.0)
June 2023

1

Unit purpose
This is a specialist unit, designed for learners with an interest in computer science who wish
to learn about programming paradigms and the programming languages and techniques
associated with each paradigm. It is particularly relevant to learners who wish to progress to
higher levels of study in computing.

Before starting the unit, learners should have previous programming experience and be
confident in using at least one programming language. Learners will find it helpful to have
completed, or to do concurrently with the unit, Object-oriented Programming at SCQF level 8
or Algorithms and Data Structures at SCQF level 8.

During the unit, learners cover:

♦ the historical development of programming languages and how they can be categorised

into paradigms
♦ the main characteristics of each paradigm
♦ comparing paradigms
♦ applying different paradigms to a problem

The unit helps learners to understand the different types of programming paradigm and the
best applications of each. It broadens their appreciation of the art of computer programming.

The unit is knowledge-based but learners apply their theoretical knowledge of paradigms to
the solution of a problem, using at least two paradigms. The focus of the unit is breadth, not
depth. The unit aims to expose learners to a range of alternative paradigms, and their
associated programming techniques and use-cases, to give them an appreciation of the
different languages and different techniques that can be applied to problems.

On completion of the unit, learners understand that there are different types of programming
language, and different programming techniques associated with each type. They appreciate
how different paradigms can be used to solve problems. Learners could progress to further
studies in computer science at SCQF level 9 and above.

NextGen: HN published prototype unit specification for use in pilot delivery only (version 1.0)
June 2023

2

Unit outcomes
Learners who complete this unit can:

1 describe the evolution of programming languages and programming paradigms
2 explain programming paradigms and their relationship to programming languages
3 compare programming paradigms
4 select and apply paradigms to a problem

Evidence requirements
Learners must provide knowledge and product evidence for this unit.

Knowledge evidence
Knowledge evidence relates to outcomes 1, 2 and 3. Evidence may be the minimum to infer
competence. Learners must demonstrate all the defined knowledge at least once.

In the context of outcome 1, learners must describe all the important milestones.

In the context of outcome 2, learners must explain imperative and declarative paradigms,
and provide several examples of each.

In the context of outcome 3, learners must compare the following paradigms (or instances of
paradigms):

♦ low-level languages
♦ procedural languages
♦ object-oriented languages
♦ event-driven languages
♦ functional languages
♦ logic languages

They must consider the key characteristics, advantages and disadvantages, and use-cases
of each paradigm.

If you use a test, you can sample knowledge evidence. The sampling frame must always
include question(s) from outcomes 1, 2 and 3.

Learners must produce knowledge evidence under controlled conditions in terms of location,
timing and supervision.

NextGen: HN published prototype unit specification for use in pilot delivery only (version 1.0)
June 2023

3

Product evidence
Product evidence relates to outcome 4. Learners must solve a problem using at least two of
the paradigms compared in outcome 3. They must provide a narrative explaining the
differences between the paradigms and the strengths and weaknesses of each in the context
of the problem. The problem must be sufficiently complex to demonstrate the key
characteristics of each approach.

Learners should produce product evidence in lightly-controlled conditions, over an extended
period of time, at times and places at their discretion. Learners must produce evidence
without assistance. However, they may access code repositories where appropriate.
The standard of evidence should be consistent with the SCQF level of the unit.

Evidence produced in lightly-controlled conditions must be authenticated. The Guide to
Assessment provides further advice on methods of authentication. The ‘Additional guidance’
section in this unit specification provides specific examples of instruments of assessment that
will generate the required evidence.

https://www.sqa.org.uk/files_ccc/Guide_To_Assessment.pdf
https://www.sqa.org.uk/files_ccc/Guide_To_Assessment.pdf

NextGen: HN published prototype unit specification for use in pilot delivery only (version 1.0)
June 2023

4

Knowledge and skills
The following table shows the knowledge and skills covered by the unit outcomes:

Knowledge Skills

Learners should understand:

♦ historical milestones in the evolution of

programming languages and paradigms
♦ contemporary programming languages

and their uses
♦ trends in programming
♦ fundamental components of

programming languages, including:
— constants
— variables
— sub-routines
— functions
— data structures

♦ machine code and low-level languages
♦ high-level languages
♦ program translation, including

assemblers and compilers
♦ syntax and semantics
♦ algorithms and pseudocode
♦ programming constructs
♦ concept of paradigms in the context of

programming
♦ types of programming paradigm
♦ characteristics of each paradigm
♦ classification of languages by paradigm
♦ multi-paradigms
♦ difference between procedural

programming and object-oriented
programming (OOP)

♦ programming techniques related to each
paradigm

♦ strengths and weaknesses of each
paradigm

♦ performance of each paradigm
♦ applications of each paradigm

Learners can:

♦ select a paradigm to solve a problem
♦ apply an appropriate paradigm to a

problem
♦ write code using an imperative

programming language
♦ write code using a declarative

programming language

NextGen: HN published prototype unit specification for use in pilot delivery only (version 1.0)
June 2023

5

Meta-skills
Throughout this unit, learners develop meta-skills to enhance their employability in the
computing sector.

Self-management
This meta-skill includes:

♦ focusing: sorting; attention to detail
♦ adapting: decision making; selecting and applying paradigms in a range of contexts

Social intelligence
This meta-skill includes:

♦ communicating: receiving information through various means and interpreting it
♦ collaborating: listening and conveying information

Innovation
This meta-skill includes:

♦ curiosity: recognising problems and devising solutions
♦ creativity: idea generation; maker mentality
♦ sense-making: pattern recognition; analysis; synthesis
♦ critical thinking: logical and computational thinking; deconstruction; judgment

NextGen: HN published prototype unit specification for use in pilot delivery only (version 1.0)
June 2023

6

Delivery of unit
You can deliver this unit alongside Object-oriented Programming at SCQF level 8 or
Algorithms and Data Structures at SCQF level 8. The time required varies depending on the
previous experience of individual learners.

Based on 80 hours delivery and assessment time, we suggest the following distribution:

Outcome 1 — Describe the evolution of programming languages and programming

paradigms
(15 hours)

Outcome 2 — Explain programming paradigms and their relationship to programming
languages
(25 hours)

Outcome 3 — Compare programming paradigms
(15 hours)

Outcome 4 — Select and apply paradigms to a problem
(25 hours)

NextGen: HN published prototype unit specification for use in pilot delivery only (version 1.0)
June 2023

7

Additional guidance
The guidance in this section is not mandatory.

Content and context for this unit
You can offer this as a stand-alone unit or as part of a group award, such as HND Computer
Science. When taken as part of a larger qualification, you can deliver it alongside other units
in the award, such as Algorithms and Data Structures at SCQF level 8 or Object-oriented
Programming at SCQF level 8 in HND Computer Science.

The unit is particularly suitable for learners who wish to progress to an undergraduate degree
in computer science as it aligns with content found in most university computer science
curriculums in years one and two.

Before starting the unit, learners should be proficient in at least one high-level (most likely to
be imperative) programming language. Time constraints limit the depth of treatment of each
language and paradigm. The key objective of the unit is to give learners an appreciation of
different languages and different programming techniques, and their typical use cases. For
example, if learners come into the unit with prior experience of Python, they could highlight
and contrast the multi-paradigm nature of that language (object-oriented and procedural) with
other examples of each paradigm, such as Pascal (procedural) and Visual Basic (OOP).

Further exposure to languages such as Prolog (logic) and Structured Query Language (SQL)
(functional) would illustrate all the main paradigms. Highlighting the recent changes to Excel,
which made it a fully-fledged functional programming language, would consolidate many of
the key concepts in the unit.

The unit provides learners with an opportunity to explore the historical development of
programming languages and programming paradigms. It broadens their appreciation of
computer programming.

Although you should use traditional classifications of paradigms (imperative and declarative)
for the purposes of learning and teaching, the following types of language could be
considered distinct paradigms in terms of their language constructs and semantics, and their
associated methods:

♦ low-level languages
♦ procedural languages
♦ object-oriented languages
♦ event-driven languages
♦ functional languages
♦ logic languages

Learners are not required to use all these languages and methods. However, they must use
at least one imperative and one declarative language. Learners should be exposed to more
than one of each type.

NextGen: HN published prototype unit specification for use in pilot delivery only (version 1.0)
June 2023

8

You should consider the performance of each paradigm (knowledge) in relation to the
following characteristic of a language or paradigm:

♦ instruction path length
♦ code complexity
♦ execution and response times
♦ object code size
♦ memory management
♦ parallel programming

Writing code (skills) may be limited to straightforward applications of each paradigm. The
focus of the unit is breadth, not depth.

Resources
Learners must have access to a range of programming languages, and their corresponding
integrated development environments (IDEs), to carry out the practical element of the
course. We suggest the following languages:

Procedural
♦ C: developed by Dennis Ritchie and Ken Thompson
♦ C++: developed by Bjarne Stroustrup
♦ ColdFusion: developed by J J Allaire
♦ Java: developed by James Gosling at Sun Microsystems
♦ Pascal: developed by Niklaus Wirth

Object-oriented
♦ C++: developed by Bjarne Stroustrup
♦ Java: developed by James Gosling at Sun Microsystems
♦ Objective-C: designed by Brad Cox
♦ Visual Basic .NET: developed by Microsoft
♦ Python: developed by Guido van Rossum
♦ Ruby: developed by Yukihiro Matsumoto
♦ Simula: developed by Ole-Johan Dahl and Kristen Nygaard
♦ Smalltalk: developed by Alan Kay, Dan Ingalls and Adele Goldberg

Logic
♦ Prolog: developed by Alain Colmerauer and Robert Kowalski

NextGen: HN published prototype unit specification for use in pilot delivery only (version 1.0)
June 2023

9

Functional
♦ Erlang: developed by Joe Armstrong and Robert Virding
♦ Excel: developed by Microsoft
♦ JavaScript: developed by Brendan Eich
♦ Haskell: developed by Lennart Augustsson and Dave Barton
♦ Lisp: developed by John McCarthy
♦ ML: developed by Robin Milner
♦ Scala: developed by Martin Odersky
♦ SQL: developed by IBM Corporation, Inc.

Approaches to delivery
You can teach the unit alongside other units within a group award.

When teaching the unit, you should aim to embed theory concepts in the practical work of the
course. Learners should experience a range of programming languages and associated
programming methods. Brief exposure to a variety of paradigms is preferable to deep
exposure to a small number of paradigms, even if exposure is trivial in terms of problem
complexity.

Approaches to assessment
A traditional approach to assessment might involve a test of learners’ knowledge of
outcomes 1, 2 and 3 and a practical assignment for outcome 4.

The test could take the form of a timed, unseen question paper comprising several
extended-response questions. Sample questions could include:

♦ Describe THREE important milestones in the development of programming languages,

explaining their contribution to the evolution of computer programming.
♦ Explain FOUR significant differences between imperative and declarative paradigms,

providing examples to illustrate your answer.
♦ What is meant by ‘multi-paradigm’? Give at least ONE example of a multi-paradigm

programming language and explain the benefits of this type of language.

A pass mark of 50 per cent is appropriate.

An alternative traditional approach could require learners to write one or more essays on
specific themes within the unit. If you use this assessment method, the essay topic(s) must
be unknown to learners and the assessment carried out in timed and supervised conditions.

The programming assignment could ask learners to solve a problem using two different
paradigms (such as procedural and OOPs). The assessment activity would require learners
to provide program code (for each approach) and a narrative outlining the differences
between the paradigms, and the strengths and weaknesses of each in the context of the

NextGen: HN published prototype unit specification for use in pilot delivery only (version 1.0)
June 2023

10

problem. If you use this assessment method, it should be carried out in
lightly-controlled conditions over an extended period of time.

A more contemporary approach to assessment could involve learners maintaining a portfolio
of their written work (knowledge evidence) and programming activities (product evidence). If
you take this approach, the portfolio must satisfy the specific evidence requirements defined
in the ‘Evidence requirements’ section; sampling is not appropriate.

NextGen: HN published prototype unit specification for use in pilot delivery only (version 1.0)
June 2023

11

Equality and inclusion
This unit is designed to be as fair and as accessible as possible with no unnecessary barriers
to learning or assessment.

You should take into account the needs of individual learners when planning learning
experiences, selecting assessment methods or considering alternative evidence.

Guidance on assessment arrangements for disabled learners and/or those with additional
support needs is available on the assessment arrangements web page:
www.sqa.org.uk/assessmentarrangements.

http://www.sqa.org.uk/assessmentarrangements

NextGen: HN published prototype unit specification for use in pilot delivery only (version 1.0)
June 2023

12

Information for learners
Programming Paradigms (SCQF level 8)

This information explains:

♦ what the unit is about
♦ what you should know or be able to do before you start
♦ what you need to do during the unit
♦ opportunities for further learning and employment

Unit information
This unit introduces you to different programming languages and programming methods. You
should be familiar with at least one programming language before starting the unit.

The unit is particularly suitable for learners who wish to progress to study degree-level
computer science.

During the unit, you learn about:

♦ the historical development of programming languages
♦ programming paradigms
♦ different programming techniques
♦ machine code programming
♦ high-level languages
♦ object-oriented languages
♦ functional programming languages
♦ logic programming languages
♦ when and how to use different paradigms

You gain hands-on experience of using a range of programming languages and
programming methods.

The unit deepens your appreciation of programming languages and programming
techniques.

Assessment could take the form of a test of your knowledge, and a practical assignment to
demonstrate that you can program using two or more different types of programming
languages.

Throughout the unit, you develop meta-skills covering self-management, social intelligence
and innovation.
On completion of the unit, you may choose to progress to units of study in computer science
at SCQF level 9 and above.

NextGen: HN published prototype unit specification for use in pilot delivery only (version 1.0)
June 2023

13

Administrative information

Published: June 2023 (version 1.0)

Superclass: CB

History of changes

Version Description of change Date

Note: please check SQA’s website to ensure you are using the most up-to-date version of
this document.

© Scottish Qualifications Authority 2023

http://www.sqa.org.uk/nextgen

	Next Generation Higher National Unit Specification
	Programming Paradigms (SCQF level 8)
	Unit code: J7DY 48
	SCQF level: 8 (16 SCQF credit points)
	Valid from: session 2023–24

	Prototype unit specification for use in pilot delivery only (version 1.0) June 2023
	Unit purpose
	Unit outcomes
	Evidence requirements
	Knowledge evidence
	Product evidence

	Knowledge and skills
	Meta-skills
	Self-management
	Social intelligence
	Innovation

	Delivery of unit
	Additional guidance
	Content and context for this unit
	Resources
	Procedural
	Object-oriented
	Logic
	Functional

	Approaches to delivery
	Approaches to assessment

	Equality and inclusion
	Information for learners
	Programming Paradigms (SCQF level 8)
	Unit information

	Skills
	Knowledge
	Administrative information
	History of changes

	Date
	Description of change
	Version

