

Next Generation Higher National Unit
Specification
Object-Oriented Programming (SCQF level 8)

Unit code: J7DW 48

SCQF level: 8 (16 SCQF credit points)

Valid from: session 2023–24

Prototype unit specification for use in pilot delivery
only (version 1.0) May 2023

This unit specification provides detailed information about the unit to ensure consistent and
transparent assessment year on year.

This unit specification is for teachers and lecturers and contains all the mandatory
information required to deliver and assess the unit.

The information in this unit specification may be reproduced in support of SQA qualifications
only on a non-commercial basis. If it is reproduced, SQA must be clearly acknowledged as
the source. If it is to be reproduced for any other purpose, written permission must be
obtained from permissions@sqa.org.uk.

This edition: May 2023 (Version 1.0)

© Scottish Qualifications Authority 2023

mailto:permissions@sqa.org.uk

NextGen: HN published prototype unit specification for use in pilot delivery only (version 1.0)
May 2023

2

Unit purpose
This unit enables learners to develop a broad knowledge of the concepts, principles, and
techniques of object-oriented software development. Learners develop problem-solving and
object-oriented technical skills, with emphasis on the development and testing of the class
libraries required for a given problem domain.

This specialist unit is particularly suitable for learners who are studying software
development or computing science. We strongly recommend that learners are familiar with
fundamental programming concepts at SCQF level 7. They can demonstrate this by having
completed one or more of the following Higher National (HN) units:

♦ Developing Software: Introduction at SCQF level 7
♦ Software Development: Developing Small Scale Standalone Applications at SCQF level 7
♦ Software Development: Programming Foundations at SCQF level 7

On completion of the unit, learners may progress to more advanced topics in object-oriented
software design and development.

NextGen: HN published prototype unit specification for use in pilot delivery only (version 1.0)
May 2023

3

Unit outcomes
Learners who complete this unit can:

1 investigate object-oriented programming techniques and apply them to a design
2 implement a solution from an object-oriented design using object-oriented techniques
3 test the completed program

Evidence requirements
Learners must provide product evidence. Knowledge is inferred from the product evidence.

Learners must produce evidence of successfully investigating and applying appropriate
object-oriented programming techniques.

Learners must implement a given object-oriented design. The object-orientated design must
be of sufficient complexity to cover the knowledge and skills for each outcome. The design
must consist of at least four classes, and learners must implement at least one ‘one-to-many’
association. They must also show the correct use of encapsulation and inheritance.

Learners must produce completed test documentation that records both the expected results
of the test data and the actual results. The test data must test the implemented solution in
both scope and range.

Learners must record and evaluate the results of the test runs. Where there are
discrepancies between the expected results and the actual results, learners must amend and
correct the coding accordingly.

The product evidence can be produced over an extended period of time in lightly controlled
conditions. Give learners access to learning materials. Authentication is required when
evidence is produced in lightly controlled conditions.

NextGen: HN published prototype unit specification for use in pilot delivery only (version 1.0)
May 2023

4

Knowledge and skills
The following table shows the knowledge and skills covered by the unit outcomes:

Knowledge Skills

Learners should understand:

♦ object-oriented concepts and terms
♦ object-oriented programming techniques
♦ objects and classes
♦ attributes and methods
♦ parameter passing
♦ abstraction, encapsulation and

information-hiding
♦ inheritance
♦ polymorphism
♦ association
♦ aggregation and collection
♦ coupling and cohesion
♦ overloading methods

Learners can:

♦ declare and initialise variables
♦ use operators
♦ implement control structures
♦ define data structures
♦ access and manipulate data structures
♦ use parameter passing
♦ create classes
♦ create instances of classes
♦ create relationships between classes
♦ create constructor methods
♦ use exceptions
♦ use standard object libraries
♦ document code
♦ implement a test plan using a defined

strategy
♦ maintain test documentation
♦ evaluate results of test runs
♦ amend code as necessary

NextGen: HN published prototype unit specification for use in pilot delivery only (version 1.0)
May 2023

5

Meta-skills
Throughout the unit, learners develop meta-skills to enhance their employability in the
computing sector.

Self-management
This meta-skill includes:

♦ focusing: sorting and maintaining documentation throughout development in a logical and

efficient manner; attention to detail to ensure error-free, robust program code;
considering all aspects of user requirements

♦ adapting: critically reflecting on personal skills development; self-learning to develop
wider skills and extend development beyond requirements and taught content

♦ initiative: independent thinking to establish user requirements and design solutions;
developing an object-oriented application based on client information; self-motivation and
taking ownership of personal development; time management

Social intelligence
This meta-skill includes:

♦ communicating: receiving information to establish the user requirements and ensure an

understanding of the brief; giving information during application testing to confirm
objectives and ensure that requirements are understood

♦ feeling: storytelling through the creation of technical documentation, providing a
walk-through and detail of the program and its user interface

Innovation
This meta-skill includes:

♦ creativity: using imagination to provide a solution that is object-oriented; seeing the

program solution through the user’s eyes; generating ideas and thinking about problem
areas and how to provide a solution; visualising to create an overall impression of the
completed solution throughout the process

♦ sense-making: analysis; seeing the bigger picture
♦ critical thinking: thinking logically to ensure a coherent approach and to meet

requirements appropriately

NextGen: HN published prototype unit specification for use in pilot delivery only (version 1.0)
May 2023

6

Delivery of unit
This unit is intended to form part of a group award and is not suitable as a stand-alone unit.
We have designed the unit as a follow-on to Developing Software: Introduction at SCQF
level 7. We assume that learners have knowledge of fundamental programming concepts,
but we advise that you briefly refresh these basic topics (variables, operators, iteration,
selection, arrays) and show learners how to implement these using the syntax of the object-
oriented programming language you have chosen to use.

You should deliver the unit in conjunction with Systems Development: Object-oriented
Analysis and Design at SCQF level 8, which develops understanding and skills in the
production of object-oriented design documentation. Your centre can also deliver the unit in
conjunction with a unit on human computer interaction (HCI), such as Human Computer
Interface at SCQF level 8.

We recommend that no more than 6 hours should be allocated to revision topics, leaving the
vast majority of the time to be allocated to object-oriented programming techniques. You
should cover the following topics:

♦ defining data structures
♦ accessing and manipulating data structures
♦ using parameter passing
♦ creating classes
♦ creating instances of classes
♦ creating relationships between classes
♦ creating constructor methods
♦ overloading methods
♦ use of exceptions
♦ use of standard object libraries
♦ use of pre-defined interface components
♦ documenting code

NextGen: HN published prototype unit specification for use in pilot delivery only (version 1.0)
May 2023

7

Additional guidance
The guidance in this section is not mandatory.

Content and context for this unit
This unit is a 2-credit introduction to object-oriented programming. Learners acquire
knowledge of the concepts and principles of object-oriented software development. Learners
must demonstrate object-oriented programming skills through the creation of object-oriented
solutions to problems that require a software solution.

Object-oriented and event-driven programming are not mutually exclusive, and almost all
object-oriented languages can be used in an event-driven way. You can structure a program
in an object-oriented manner and enable user interaction through an event-driven interface.
Learners must therefore have an understanding of basic event-driven techniques for
designing programs that have a graphical user interface.

Learners should already be familiar with basic programming building blocks, allowing the unit
to focus on object-oriented programming concepts, such as classes and inheritance, to
create simple graphical user interface (GUI) applications that match the unit purpose. Your
learning and teaching approaches may include problem-based learning, teamwork, and
potentially an element of competition such as ‘solve in an hour’ code challenges to engage
learners and encourage self-directed study.

We have not specified the implementation language. At the time of writing, the most
appropriate languages to use are Java or C#. Both of these languages are widely used in
industry and have a similar, C-type syntax. Java is a good teaching language with a large
object library, and the creation of user interfaces is supported through the Abstract Window
Toolkit (AWT) and Swing.

C# allows for the creation of interfaces through simple drag and drop, and the Microsoft XNA
development kit can be used in association with C# for the development of fairly complex
computer games, if you want to enable learners to develop games. You should introduce
learners to the standard object libraries and show them Sun Java Docs for Java, or Microsoft
Developer Network (MSDN) libraries for C# and C++, and demonstrate how to make use of
appropriate standard objects through library calls such as ‘import’ or ‘using’.

We recommend that you introduce learners to technical skills related to event-driven
programming, depending on which implementation language you have chosen. For example,
if you use Java then you can introduce AWT and the Swing component classes. If you use
C#, you can show learners how to set up user interfaces through code or use the toolbox of
user interface components and their various properties. The GUI libraries supplied with
modern object-oriented languages are an excellent way of introducing the idea of classes
and objects. The hierarchies can aid in the understanding of inheritance and encapsulation.
In addition, you can use the interactive event methods to introduce the concept of events in
software development.

NextGen: HN published prototype unit specification for use in pilot delivery only (version 1.0)
May 2023

8

To understand practical object-oriented programming techniques and structures, there are
several theoretical object-oriented concepts that learners should understand. You must cover
the following topics:

♦ objects and classes
♦ attributes and methods
♦ parameter passing
♦ abstraction, encapsulation and information-hiding
♦ inheritance
♦ polymorphism
♦ association
♦ aggregation
♦ coupling
♦ cohesion

We recommend that you combine theory and practice as much as possible, rather than
separating them. For each of the above topics, you should provide learners with several
practical exercises. You should increase the complexity of the practical exercises as learners
progress and learn new techniques. Providing examples that show a new technique or skill in
isolation is useful for initial understanding of how a technique may be implemented, but is not
useful for the problem-solving and program design process. You should adopt an approach
that incorporates new techniques into larger programs from an early stage in the unit so that
there is opportunity for integration of concepts.

Internal documentation of code must adhere to current commercial standards. At the time of
writing, this includes basic Javadoc for Java, or basic XML documentation for C#. You should
stress the importance of naming conventions, indentation, and version control when
discussing code structure and documentation.

You should help learners to develop the ability to analyse a project design brief and
implement a suitable object-oriented solution through practice, rather than teaching this as
an explicit skill. In outcome 2, you should introduce the object-oriented software development
methodology and unified modelling language, and we recommend that you also introduce
learners to case-based reasoning. This is the technique of looking back at previous problems
and their solutions and using similar cases as the basis for the design of an implementation
for the new problem. For example, you could show learners the problem of writing a noughts
and crosses game, and as a class they could design and implement the solution to this
problem. You could then ask learners to create a Connect 4 game, using the noughts and
crosses game as a basis for their design, due to the many similarities between the two
games.

As a non-introductory programming unit, the context and examples you use should be
relatively complex in terms of the scope and programming fundamentals required. However,
they should be relatively simple in terms of object orientation. Using examples of relatively
simple games (for example noughts and crosses, Battleship, Pac-man, Pong, Space
Invaders) would hopefully make the learning process more enjoyable and meaningful for

NextGen: HN published prototype unit specification for use in pilot delivery only (version 1.0)
May 2023

9

learners and would permit them to concentrate more on the programming techniques
involved, rather than trying to understand the initial problem.

The GUI libraries supplied with modern object-oriented programming languages are an
excellent way of introducing the idea of classes and objects. If you adopt this approach, then
you might also introduce learners to HCI design techniques, such as storyboarding.

By the end of the unit, learners should have achieved a good foundation in the skills required
for developing reliable, robust and efficient object-oriented program designs for simple
applications.

The unit covers some of the skills described for a pre-entry or junior technician role in the
National Occupational Standards IT and Telecoms (2009). The main areas covered
correspond to:

♦ Discipline 5.2: Software Development
♦ Discipline 5.3: IT/Technology Solution Testing

There are also opportunities in the unit to address a range of skills at both foundation and
intermediate level that are described in the National Occupational Standards for IT Users v3.
The most likely areas to be covered would be ‘Using the Internet’ and ‘IT Software
Fundamentals’.

Approaches to assessment
We recommend that you assess the unit with a single project covering all three outcomes.
Ideally, the assessment project would involve producing an application or a library of
routines. You can also offer two or more projects to give learners a degree of choice. The
evidence requirements can be met through one large program that covers all knowledge and
skills, or via a portfolio of two or more smaller programs.

NextGen: HN published prototype unit specification for use in pilot delivery only (version 1.0)
May 2023

10

Equality and inclusion
This unit is designed to be as fair and as accessible as possible with no unnecessary barriers
to learning or assessment.

You should take into account the needs of individual learners when planning learning
experiences, selecting assessment methods or considering alternative evidence.

Guidance on assessment arrangements for disabled learners and/or those with additional
support needs is available on the assessment arrangements web page:
www.sqa.org.uk/assessmentarrangements.

http://www.sqa.org.uk/assessmentarrangements

NextGen: HN published prototype unit specification for use in pilot delivery only (version 1.0)
May 2023

11

Information for learners
Object-Oriented Programming (SCQF level 8)

This information explains:

♦ what the unit is about
♦ what you should know or be able to do before you start
♦ what you need to do during the unit
♦ opportunities for further learning and employment

Unit information
This non-introductory unit covers the object-oriented programming skills required for a career
in software development. We assume you have prior knowledge and proficiency in basic
programming concepts and techniques. We recommend that you have successfully
completed Developing Software: Introduction at SCQF level 7 before starting the unit.

In the unit you acquire knowledge of the concepts, principles, and techniques of
object-oriented software development that are necessary for you to design and develop
object-oriented software. This involves the following areas of learning:

♦ Investigate object-oriented programming techniques and apply them to a design.
♦ Implement a solution from an object-oriented design using object-oriented techniques.
♦ Test the completed product.

Your knowledge and skills are assessed by the following tasks and associated learning:

♦ Using the features of an object-oriented programming language, you implement a

software solution based on a given design.
♦ Your understanding and grasp of object-oriented concepts and programming techniques

are reinforced throughout with practical exercises.
♦ Using a test plan, you test your software to ensure it works correctly and meets the user

requirements.
♦ You amend any errors in your code to achieve a robust, reliable and efficient working

program.

The theory and practice of programming for an object-oriented design are intertwined in your
learning experience. The applications that you develop are simple, but require the
implementation of object-oriented programming techniques and processes.

Throughout the unit, you develop meta-skills in the areas of self-management, social
intelligence and innovation.

When you finish the unit, you may progress to more advanced units in object-oriented design
and programming at SCQF level 8 and above.

NextGen: HN published prototype unit specification for use in pilot delivery only (version 1.0)
May 2023

12

Administrative information

Published: May 2023 (version 1.0)

Superclass: CB

History of changes

Version Description of change Date

Note: please check SQA’s website to ensure you are using the most up-to-date version of
this document.

© Scottish Qualifications Authority 2023

http://www.sqa.org.uk/nextgen

	Next Generation Higher National Unit Specification
	Object-Oriented Programming (SCQF level 8)
	Unit code: J7DW 48
	SCQF level: 8 (16 SCQF credit points)
	Valid from: session 2023–24

	Prototype unit specification for use in pilot delivery only (version 1.0) May 2023
	Unit purpose
	Unit outcomes
	Evidence requirements

	Knowledge and skills
	Meta-skills
	Self-management
	Social intelligence
	Innovation

	Delivery of unit
	Additional guidance
	Content and context for this unit
	Approaches to assessment

	Equality and inclusion
	Information for learners
	Object-Oriented Programming (SCQF level 8)
	Unit information

	Skills
	Knowledge
	Administrative information
	History of changes

	Date
	Description of change
	Version

