

Next Generation Higher National Unit
Specification
Algorithms and Data Structures (SCQF level 8)

Unit code: J7DH 48

SCQF level: 8 (24 SCQF credit points)

Valid from: session 2023–24

Prototype unit specification for use in pilot delivery
only (version 1.0) June 2023

This unit specification provides detailed information about the unit to ensure consistent and
transparent assessment year on year.

This unit specification is for teachers and lecturers and contains all the mandatory
information required to deliver and assess the unit.

The information in this unit specification may be reproduced in support of SQA qualifications
only on a non-commercial basis. If it is reproduced, SQA must be clearly acknowledged as
the source. If it is to be reproduced for any other purpose, written permission must be
obtained from permissions@sqa.org.uk.

This edition: June 2023 (version 1.0)

© Scottish Qualifications Authority 2023

mailto:permissions@sqa.org.uk

NextGen: HN published prototype unit specification for use in pilot delivery only (version 1.0)
June 2023

1

Unit purpose
This unit introduces learners to common abstract data structures. It gives learners an
understanding of their operation and use in the implementation of digital data storage
solutions. Learners also learn the common algorithms used to manipulate, search and sort
data stored in these data structures.

This is a specialist unit, intended for learners with an interest in computer programming. It is
particularly suitable for learners who are undertaking an HND in Computer Science or
Software Development.

The unit does not require any previous knowledge of data structures, or how to search and
sort algorithms. However, learners should understand at least one programming language at
SCQF level 7.

On completion of the unit, learners have key fundamental knowledge of the principles behind
various commonly used algorithms and data structures. This knowledge will help them with
any future programming languages they encounter.

NextGen: HN published prototype unit specification for use in pilot delivery only (version 1.0)
June 2023

2

Unit outcomes
Learners who complete this unit can:

1 manipulate data storage formats
2 implement abstract data structures
3 write programs to implement common algorithms for sorting and searching data
4 compare common algorithms for sorting and searching data
5 secure data using appropriate algorithms

Evidence requirements
Learners must provide product evidence. Knowledge is inferred from the product evidence.
The product evidence comprises one or more computer programs that cover all the skills
components. You can sample specific skills components. For example, you do not need to
cover every sorting algorithm. However, you must include programs that require learners to
write, test and run code for:

♦ reading and writing data between different file formats
♦ at least one built-in data collection structure
♦ the creation and use of singly and doubly linked lists
♦ the creation and use of a binary search tree
♦ the implementation of at least two from the following structures: stacks, queues, deques,

and heaps
♦ the implementation of at least two search and two sort algorithms, including a time and

space complexity comparison between them
♦ the implementation of recursion in a search or sort algorithm
♦ locating the highest and lowest values within data
♦ encryption, decryption and compression of data using existing code libraries

Learners can produce their product evidence over an extended period of time in
lightly-controlled conditions. Give learners access to learning materials. Evidence produced
in lightly controlled conditions must be authenticated. The Guide to Assessment provides
further advice on methods of authentication.

The standard of evidence should be consistent with the SCQF level of the unit.

https://www.sqa.org.uk/files_ccc/Guide_To_Assessment.pdf

NextGen: HN published prototype unit specification for use in pilot delivery only (version 1.0)
June 2023

3

Knowledge and skills
The following table shows the knowledge and skills covered by the unit outcomes:

Knowledge Skills

Learners should understand:

♦ common data storage formats
♦ data storage format manipulation
♦ built-in data structures
♦ abstract data structures
♦ the implementation of static abstract

data structures
♦ the implementation of dynamic abstract

data structures
♦ desk-check algorithms
♦ how to compare different search

algorithms
♦ how to compare different sorting

algorithms
♦ how to use data encryption algorithms
♦ how to use data compression algorithms

Learners can:

♦ interpret common data storage formats
♦ produce code to read, write and update

common data storage formats
♦ produce code to transfer data between

different storage formats
♦ produce code to access, add, remove

and update data within built-in collection
structures

♦ produce code that creates singly linked
list data structures from first principles

♦ produce code to access, add, remove,
and update data in a singly linked list

♦ produce code that creates doubly linked
list data structures from first principles

♦ produce code to access, add, remove,
and update data in a doubly linked list

♦ produce code that uses binary search
tree data structures from first principles

♦ produce code to access, add, remove,
and update data by traversing a binary
search tree

♦ produce code to implement stacks,
queues, deques, and heap structures,
using both the abstract linked list and
built-in array or list structures

♦ produce recursive functions or methods
to solve a variety of problems

♦ perform desk-checking of algorithms
♦ produce code that uses two or more

sorting algorithms
♦ produce code that uses two or more

searching algorithms

NextGen: HN published prototype unit specification for use in pilot delivery only (version 1.0)
June 2023

4

Knowledge Skills

 Learners can:

♦ produce code to locate the largest and

smallest items in a collection of values
♦ select the best search algorithm based

on time and space complexity
♦ select the best sort algorithm based on

time and space complexity
♦ use existing libraries to produce code,

using common cryptographic algorithms
♦ use existing libraries to produce code,

using common data compression
algorithms

NextGen: HN published prototype unit specification for use in pilot delivery only (version 1.0)
June 2023

5

Meta-skills
Throughout this unit, learners develop meta-skills to enhance their employability in the IT
sector.

Self-management
This meta-skill includes:

♦ focusing: sorting and maintaining documentation; attention to detail
♦ adapting: critically reflecting on own skills; evaluating user experience; self-learning to

develop wider skills and extend development beyond requirements and taught content
♦ initiative: displaying independent thinking; taking ownership of own development, time

and learning; satisfying user requirements

Social intelligence
This meta-skill includes:

♦ communicating: receiving and giving information; establishing user requirements and

ensuring an understanding of the brief; storytelling through technical documentation
♦ collaborating: working in groups to discuss, analyse and formulate a solution to a given

problem
♦ leading: producing independent solutions; providing a walk-through and details of the

system

Innovation
This meta-skill includes:

♦ curiosity: exploring the features and libraries available within a programming language;

recognising problems and devising solutions
♦ creativity: using imagination to meet the needs of the user; comparing existing knowledge

to generate ideas; visualising
♦ sense-making: analysing a programming language; seeing the bigger picture
♦ critical thinking: logical thinking to ensure a coherent approach and to meet requirements

appropriately

NextGen: HN published prototype unit specification for use in pilot delivery only (version 1.0)
June 2023

6

Delivery of unit
This unit provides learners with an understanding of how common abstract data structures
work and how these can be used to implement various storage solutions. Give learners
several problems to solve to allow them to gain a good understanding of the principles
involved.

The time required varies depending on the previous experience of individual learners.
Based on 120 hours delivery and assessment time, we suggest the following distribution:

Outcome 1 — Manipulate data storage formats

(20 hours)
Outcome 2 — Implement abstract data structures

(30 hours)
Outcome 3 — Write programs to implement common algorithms for sorting and searching

data
(30 hours)

Outcome 4 — Compare common algorithms for sorting and searching data
(20 hours)

Outcome 5 — Secure data using appropriate algorithms
(20 hours)

NextGen: HN published prototype unit specification for use in pilot delivery only (version 1.0)
June 2023

7

Additional guidance
The guidance in this section is not mandatory.

We encourage you to allow learners to use the data structures and algorithms in different
languages — although they can use a single language, depending on the level of their ability.

Content and context for this unit
Manipulate data storage formats (outcome 1)
Teach learners about common formats used for data storage and transfer between systems.
They should understand the structure of common file data formats such as JavaScript Object
Notation (JSON), comma separated values (CSV) and extensible markup language (XML).
Learners must write code that reads data from each of these files, perform updates to it and
then write the update to a file of the same or alternative format. For example, they could read
data from XML and write it to JSON.

You should encourage learners to explore the features and libraries available within their
chosen programming language, to find out what support it offers in relation to data structures
and algorithms. They can then compare these to their existing knowledge, to find out if there
are better ways of solving problems.

Implement abstract data structures (outcome 2)
Teach learners how to create and manipulate language-specific built-in abstract structures
for storing collections of values. These should include simple and multi-dimensional arrays,
sets (unique values) and tuples (unchangeable values). Learners should also know how to
use hash table (map) structures to store data as key/value pairs. For each of the above data
structures, learners must know how to add, locate, remove and update data anywhere within
the structure.

Learners must know how to create both a singly and doubly linked list abstract data structure
from first principles. They must also know how to add, locate, remove and update elements
anywhere within the structure.

Learners must know how to create a binary search tree abstract data structure from first
principles. They should be able to traverse it and add, locate, remove and update elements
at any point within it.

Learners should know how to apply these abstract data structures by writing code containing
stacks, queues, deques and heaps, using both linked lists and appropriate built-in structures.
Learners should know how to add, locate, remove and update elements at any point within
them.

NextGen: HN published prototype unit specification for use in pilot delivery only (version 1.0)
June 2023

8

Write programs to implement common algorithms for sorting and searching
data (outcome 3)
Teach learners how recursion works and how recursive functions are structured. They should
be capable of applying recursion to common problems. Examples might include factorial or
Fibonacci sequence calculations, as well as string operations such as reversal and character
counting.

Learners must know how to sort collections of data, both in ascending and descending order,
using a variety of different sorting algorithms. They must know how to code common sorting
algorithms such as bubble sort, selection sort, merge sort and quicksort. They should
understand how each works and demonstrate their application.

Learners must know how to search through data. They should know how to perform linear
searches of unsorted data. Learners should also know how to perform the more efficient
binary searches on sorted data. They should do this using both iteration and recursion. They
should also use binary tree structure searching capabilities. You should also make learners
aware of the effects of sorting data before searching within it.

You should teach learners how to find the largest and smallest values in a given list of
values.

Learners critically review their program code with a view to increasing its efficiency. This not
only tells them how well the code is working, but also offers them insights into any
improvements they should apply.

Compare common algorithms for sorting and searching data (outcome 4)
Learners should know how linear searching becomes less efficient as the volume of data
increases. They should also know that, while binary searching can solve the problem for
large data sets, the additional overhead of initial sorting of data can reduce this.

Although learners do not need to derive the time and space complexity of algorithms and
data structures, they should understand what these terms mean and know the different time
complexities of accessing, searching, inserting and deleting elements within arrays, stacks,
queues, singly and doubly linked lists, hash tables, and binary trees. Learners should also
know the different time complexities of the different sorting algorithms (bubble sort, selection
sort, merge sort and quicksort). You can use common notation, such as Big O, to describe
these.

To consolidate their understanding, you should give learners a range of problems to solve
that cover the range of algorithms and data structures taught during the unit. For example,
you can give learners a large XML data set from which they must extract some of the data,
and search and sort it. They should then store the sorted data in a JSON format and the
results of the search in CSV. You should also encourage learners to write multiple versions
of their code using different algorithms and/or data structures and compare their efficiency.

There are opportunities for learners to work in groups to discuss, analyse and formulate a
solution to a given problem. Learners could then produce independent solutions and
compare and contrast.

NextGen: HN published prototype unit specification for use in pilot delivery only (version 1.0)
June 2023

9

Secure data using appropriate algorithms (outcome 5)
Learners should understand the need for data encryption. They should learn how to write
code to encrypt and/or decrypt data using both symmetric and asymmetric encryption
algorithms. You should also teach them about associated techniques such as hashing and
compression algorithms. We do not expect learners to use these algorithms from first
principles but instead you should teach them how to use pre-written programming libraries.

Approaches to assessment
We expect learners to demonstrate their learning from outcomes holistically. Learners write
an application that can take data from at least one file type and apply it to appropriate data
structures for analysis through searching and sorting, in line with the evidence requirements.
They should then store the analysed data permanently in a suitably formatted file.

If a more individual approach is used, learners could prepare a portfolio of programs created
throughout the unit that cover the evidence requirements.

NextGen: HN published prototype unit specification for use in pilot delivery only (version 1.0)
June 2023

10

Equality and inclusion
This unit is designed to be as fair and as accessible as possible with no unnecessary barriers
to learning or assessment.

You should take into account the needs of individual learners when planning learning
experiences, selecting assessment methods or considering alternative evidence.

Guidance on assessment arrangements for disabled learners and/or those with additional
support needs is available on the assessment arrangements web page:
www.sqa.org.uk/assessmentarrangements.

http://www.sqa.org.uk/assessmentarrangements

NextGen: HN published prototype unit specification for use in pilot delivery only (version 1.0)
June 2023

11

Information for learners
Algorithms and Data Structures (SCQF level 8)
This information explains:

♦ what the unit is about
♦ what you should know or be able to do before you start
♦ what you need to do during the unit
♦ opportunities for further learning and employment

Unit information
This unit gives you an understanding of the common formats used for data storage and
transfer in computer systems and how to convert from one to another. You learn how
common abstract data structures work and how you can implement them to store and
manipulate collections of data values by using the features of a programming language. You
learn how the process of recursion works, and the common algorithms used to search and
sort data stored within data structures. You also learn how time and space complexity affects
their performance.

This is a specialist unit, intended for learners with an interest in computer programming. It is
particularly suitable if you are studying for an HND in Computer Science or Software
Development. The unit does not require you to have any previous knowledge of data
structures or algorithms such as search and sort, however you should be competent in at
least one programming language at SCQF level 7.

Throughout the unit, you develop skills in creating and testing programs in one or more
programming languages that can read and write data between different formats, implement
the various data structures, and perform algorithms on data. You also develop meta-skills
covering self-management, social intelligence and innovation.

You are assessed through the design, creation and testing of one or more programs that
implement data structures and algorithms covered in the course. When you finish the unit,
you have important knowledge and skills in selecting and using various algorithms and data
structures. This knowledge enables you to progress to more advanced programming
concepts with further study in any programming language you choose.

NextGen: HN published prototype unit specification for use in pilot delivery only (version 1.0)
June 2023

12

Administrative information

Published: June 2023 (version 1.0)

Superclass: RB

History of changes

Version Description of change Date

Note: please check SQA’s website to ensure you are using the most up-to-date version of
this document.

© Scottish Qualifications Authority 2023

http://www.sqa.org.uk/nextgen

	Next Generation Higher National Unit Specification
	Algorithms and Data Structures (SCQF level 8)
	Unit code: J7DH 48
	SCQF level: 8 (24 SCQF credit points)
	Valid from: session 2023–24

	Prototype unit specification for use in pilot delivery only (version 1.0) June 2023
	Unit purpose
	Unit outcomes
	Evidence requirements

	Knowledge and skills
	Meta-skills
	Self-management
	Social intelligence
	Innovation

	Delivery of unit
	Additional guidance
	Content and context for this unit
	Manipulate data storage formats (outcome 1)
	Implement abstract data structures (outcome 2)
	Write programs to implement common algorithms for sorting and searching data (outcome 3)
	Compare common algorithms for sorting and searching data (outcome 4)
	Secure data using appropriate algorithms (outcome 5)

	Approaches to assessment

	Equality and inclusion
	Information for learners
	Algorithms and Data Structures (SCQF level 8)
	Unit information

	Skills
	Knowledge
	Administrative information
	History of changes

	Date
	Description of change
	Version

