

Advanced Higher Computing Science
Software design and development project workshop
materials

The information in this publication may be reproduced in support of SQA qualifications only
on a non-commercial basis. If it is reproduced, SQA must be clearly acknowledged as the
source. If it is to be reproduced for any other purpose, written permission must be obtained
from permissions@sqa.org.uk.

This edition: December 2024 (version 1.0)

© Scottish Qualifications Authority 2024

mailto:permissions@sqa.org.uk

1

Introduction
This document is for teachers and lecturers and/or Advanced Higher Computing Science
candidates.

This document contains workshop activities originally devised for an Understanding
Standards event held in 2023. The workshop activities focused on the problem description,
requirements specification, design, implementation, testing and evaluation of an example
Advanced Higher software design and development project.

2

Workshop activity 1: problem
descriptions
Read the following problem description.

Example 1

My project aims to program a multiple-choice general knowledge quiz for the Clydeside Quiz
League. The 36 possible quiz questions, potential answers and the correct answers will all be
stored in an SQL database table. 10 questions will be selected and the users will be shown the
questions one at a time and given 5 seconds to answer each question. The answer will be
validated and checked and 2 points added to the score if a correct answer was selected within the
time allowed, but 4 points will be removed if the answer was entered too late. When the user has
completed the quiz, they will be given their total score. This score and the user's username can be
added to another database table that will be used to store a list of scores of the Quiz League
players. Users will be shown the complete list of scores in descending order of score and they can
then choose to try the quiz again or to quit the program.

Things to consider:

♦ Is it clear from example 1 which technologies are integrated in the solution?
♦ Advanced Higher projects must validate all inputs. Consider whether this requirement

has been considered in example 1.
♦ Example 1 doesn’t provide sufficient detail of the mandatory Advanced Higher concepts

for a software development project. Consider its shortfalls.
♦ Consider whether the intended use of a database meets the requirements of an

Advanced Higher project.

3

Example 2
Example 2 meets the standard required for the Advanced Higher problem description.

My project aims to create a general knowledge quiz for the Clydeside Quiz League. The quiz will
be developed as a procedural program that integrates with a database.

• the program will connect to the database and use a SQL query to select the quiz questions
and answers stored in a database table and store them in an array of records so that they
can be processed by the program

• the program will select and display random questions from those available and display
them one at a time

• the answers entered will be validated
• the program will check whether the answer is correct
• once the quiz is finished, the program will display the user’s score and the user can

choose to submit their score to the league
• the user will be asked to enter their username, which will be validated
• the program will connect to the database and use a SQL query to add the username and

score to the database table
• the program will connect to the database and use a SQL query to select the stored

usernames and scores and store them in an array of records
• the bubble sort algorithm will be used to arrange the usernames and scores into

descending order of score
• all inputs to the program will be validated and appropriate error messages will be

displayed when invalid values are entered

4

Workshop activity 2: requirements
specification
Example 3
Example 3 goes beyond the standard required for the Advanced Higher problem description.

My project aims to create a general knowledge quiz for the Clydeside Quiz League. The quiz will
be developed as a procedural program that integrates with a database.

• the program will connect to the database and use a SQL query to select the 36 quiz
questions, possible answers and correct answers stored in a database table and store
them in an array of records so that they can be processed by the program

• the program will select and display 10 random questions from the 36 available and display
them one at a time

• a timer will be used to give users 5 seconds to respond to each question
• the answers entered will be validated to make sure that only a, b, c, d, A, B, C and D are

entered
• the program will check whether the answer is correct and award 2 points for a correct

response received within the time allowed but will remove 4 points for taking too long to
respond to a question

• once the quiz is finished, the program will display the user’s score and the user can
choose to submit their score to the league

• the user will be asked to enter their username so that the username and score can be
saved to a separate database table

• the username will be validated and must contain between 5 and 12 characters
• the program will connect to the database and use a SQL query to add the username and

score to the database table
• the program will connect to the database and use a SQL query to select the usernames

and scores of the Clydeside Quiz League players and store them in a second array of
records

• the bubble sort algorithm will be used to arrange the usernames and scores into
descending order of score

• the usernames and scores will be displayed in descending order
• users can then try the quiz again or quit the program
• the program will terminate only when the user chooses to quit the program
• all inputs to the program will be validated and appropriate error messages will be

displayed when invalid values are entered

Use example 3 to identify the essential end-user and functional requirements for this project.

5

Completed requirements specification for example 3
Since example 3 exceeds the requirements of the Advanced Higher problem description, the
number of end-user requirements below also exceeds the Advanced Higher project
requirements.

End-user requirements
Requirement number The end users of the solution should be able to:

EU 1 Select to complete the quiz or quit program
EU 2 View one question at a time
EU 3 Enter answer to each individual question
EU 4 View final quiz score
EU 5 Choose whether to submit final score to the league
EU 6 Enter username
EU 7 View names and scores of Clydeside Quiz League players
EU 8 Select to complete the quiz again or quit program

Functional requirements
Requirement number The solution is required to:

FR 1 Allow user to either play quiz or quit program

FR 2 Store details of 36 quiz questions and answers in one database
table with details of users stored in a separate database table

FR 3 Connect to database to execute SQL queries

FR 4 Execute SQL query to select 36 questions and answers stored in
the database

FR 5 Store questions and answers in an array of records
FR 6 Select 10 random questions from the 36 available
FR 7 Display one question at a time
FR 8 Use a timer to give user 5 seconds to enter their answer

FR 9 Validate response received – this will be a required value and only
a, b, c, d, A, B, C and D are acceptable

FR 10 Check answer entered and update score

FR 11 Display user’s final score and ask whether user wants to save
score to league

FR 12 Enter username and validate to make sure it contains between 5
and 12 characters

FR 13 Execute SQL query to add username and score to existing
database table

6

Requirement number The solution is required to:

FR 14 Execute SQL query to select all usernames and scores stored in
the database

FR 15 Store usernames and scores in an array of records

FR 16 Use the bubble sort algorithm to arrange usernames and scores
into descending order of score

FR 17 Display top ten usernames and scores of Clydeside Quiz League
FR 18 Allow user to either play quiz again or quit program

FR 19 Validate all inputs to the program and display appropriate error
messages when invalid input values are entered

The requirements specification forms the ‘golden threads’ that run through the project
development.

Consider the importance of having clearly defined end-user and functional requirements in
the requirements specification:

♦ when creating the project plan
♦ at the design stage of the development
♦ during the implementation of the solution
♦ when creating the final test plan
♦ at the evaluation stage of the development

7

Workshop activity 3: discussion points
Design
Consider the design tasks that must be completed for this project.

Complete list of design tasks
Design task 1: design of Advanced Higher concepts
♦ design the data structure that will be used to store the quiz questions and answers within

the program
♦ design the data structure that will be used to store the usernames and scores within the

program
♦ create the top-level design and data flow
♦ refine top-level design to show details of any programmed requirements — including the

sort algorithm needed to arrange the usernames and scores in descending order of
score and the intended input validation

Design task 2: design of integration
♦ create a data dictionary for the table that will be used to store the usernames and scores
♦ create a data dictionary for the table that will be used to store the quiz questions and

answers
♦ create an ERD to show that the tables are unrelated
♦ design the connection between the program and the database (if not already indicated in

the top-level design or refinements)
♦ design each query required for the solution

Design task 3: user-interface design
♦ complete the user-interface design for each input screen, showing input validation and

underlying processes behind any buttons or menu options
♦ complete the user-interface design for each output screen

Design task 4: design matches requirements
♦ check that a design that meets all requirements listed in the requirements specification

has been submitted

8

Implementation
Consider the solution being developed.

♦ What evidence should be included to demonstrate that the implemented sort algorithm

works correctly.

Testing: comprehensive test plan and
comprehensive testing
Read the complete requirements specification.

♦ Discuss what tests the candidate should include in the test plan to demonstrate that all

planned input validation has been implemented correctly.
♦ Discuss what evidence the candidate should include to demonstrate that the

implemented input validation traps errors as planned.
♦ Discuss how evidence used for implementation of Advanced Higher concepts and

implementation of integration could be reused at the testing stage.

Evaluation: evaluation of maintainability and
robustness
Consider the solution being developed.

♦ Advanced Higher candidates are expected to refer to specific types of future

maintenance. Consider features that could possibly aid or hinder any such maintenance.
♦ Consider whether it would be appropriate to be critical of the limited input validation that

had been included in their solution.

	Advanced Higher Computing Science
	Software design and development project workshop materials

	Introduction
	Workshop activity 1: problem descriptions
	Example 1
	Example 2

	Workshop activity 2: requirements specification
	Example 3
	Completed requirements specification for example 3
	End-user requirements
	Functional requirements

	Workshop activity 3: discussion points
	Design
	Complete list of design tasks
	Design task 1: design of Advanced Higher concepts
	Design task 2: design of integration
	Design task 3: user-interface design
	Design task 4: design matches requirements

	Implementation
	Testing: comprehensive test plan and comprehensive testing
	Evaluation: evaluation of maintainability and robustness

