

X860/75/02

Practical Electronics

MONDAY, 29 APRIL 1:00 PM - 2:00 PM

Full name of centre			Town	
Forename(s)		Sur	name	Number of seat
Date of bir	th			

Total marks — 60

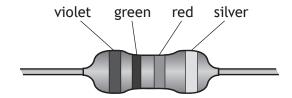
Attempt ALL questions.

You may use a calculator.

Write your answers clearly in the spaces provided in this booklet. Additional space for answers is provided at the end of this booklet. If you use this space you must clearly identify the question number you are attempting.

Use blue or black ink.

Before leaving the examination room you must give this booklet to the Invigilator; if you do not, you may lose all the marks for this paper.


Total marks — 60 Attempt ALL questions

- 1. The table below gives information about some circuit components. Some of the boxes have been left blank.
 - (a) Complete the table for the missing entries.

Component name	Symbol	Function	
Electrolytic capacitor	+	stores charge	
		electromagnetic switch	
Diode		allows current to flow in one direction only	
Thermistor			

(continued)

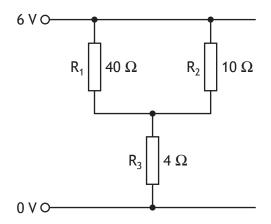
(b) A technician selects a resistor with the colour coding as shown below.

Use the information in the data sheet to answer the questions below.

(i) Determine the resistance of this resistor.

1

(ii) State the percentage tolerance of this resistor.


1

(iii) Determine the maximum and minimum resistance of this resistor in ohms.

- State two safety precautions that must be taken when using a soldering iron.

3. A circuit diagram is shown below.

(i) Calculate the effective resistance of \boldsymbol{R}_1 and \boldsymbol{R}_2 in parallel. (a) Space for working and answer

3

(ii) Calculate the total resistance of this circuit. Space for working and answer

3. (continued)

(b) Calculate the current in resistor R₃.

Space for working and answer

3

(c) Calculate the power dissipated in resistor R_3 . Space for working and answer

3

[Turn over

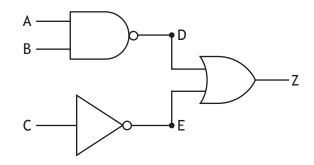
page 05

1

- There are many different types of logic gate used in electronics.
 - (a) Complete the truth table for an AND gate.

Α	В	Output
0	0	
0	1	
1	0	
1	1	

(An additional truth table, if required, can be found on page 16.)


(b) Name the logic gate shown below.

3

4. (continued)

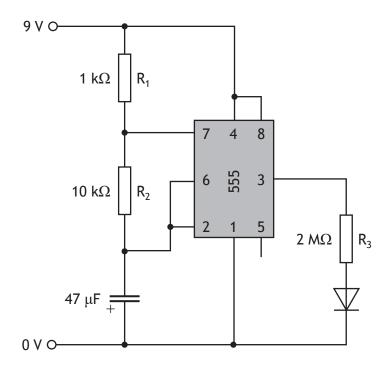
(c) Complete the truth table for the logic circuit shown below.

Α	В	С	D	E	Z
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

(An additional truth table, if required, can be found on page 16.)

[Turn over

page 07


Simulation is used in circuit design.

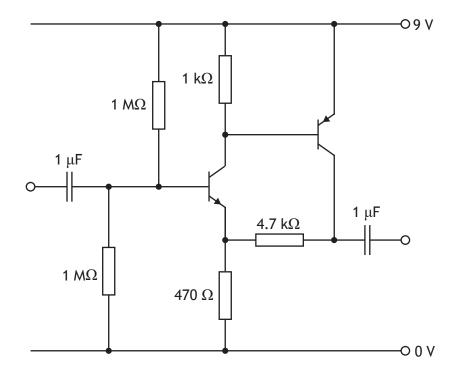
MARKS DO NOT WRITE IN THIS MARGIN

2

(a) State two reasons for simulating a circuit before it is constructed.

(b) A student simulated the flashing LED circuit shown below.

Identify three errors in the student's circuit.


3

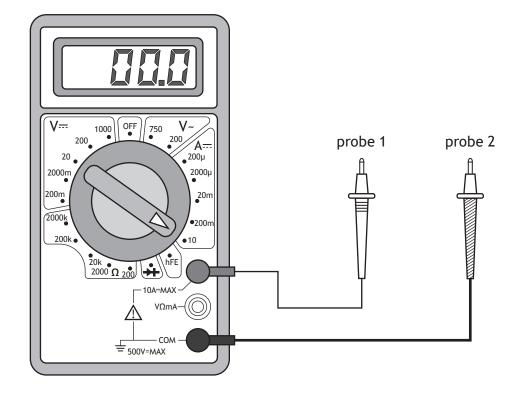
Error 1:

Error 2:

Error 3:

6. A technician constructed a circuit from the schematic diagram shown below.

Complete the following table by giving three pre-power up checks for this circuit.


Pre-power up checklist
Correct power supply voltage

[Turn over

page 09

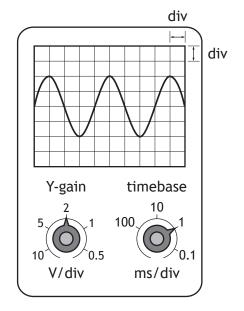
7. A student wants to check that the current flowing through a component is 1.2 mA DC.

(a) Identify two changes that must be made to the multimeter to get the most accurate measurement.

2

Change 1:

Change 2:


(b) Draw the symbol for direct current that is shown on the meter.

1

(c) State the most appropriate scale that should be used to check the resistance of a 15 000 Ω resistor.

The trace is shown on the screen.

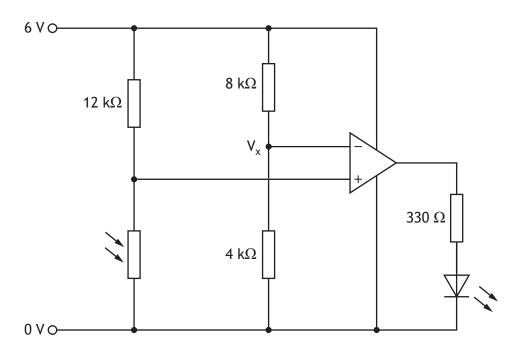
The Y-gain and timebase settings are also shown below.

(a) State whether this signal is analogue or digital.

1

(b) Determine the peak voltage of this signal.

1


(c) Calculate the frequency of this signal.

Space for working and answer

9. A child's LED night light is controlled using a LM741 comparator circuit as shown below.

MARKS DO NOT WRITE IN THIS MARGIN

(a) Calculate the reference voltage V_x . Space for working and answer

3

(b) State the resistance of the light dependent resistor when the voltage across it is equal to the reference voltage $V_{\rm x}$.

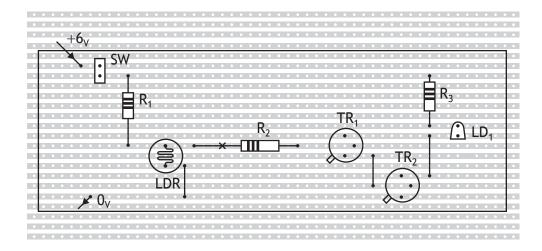
1

(c) Describe how this circuit works.

10. A security system for an art gallery is required to protect an expensive vase.

The system must include a sensor that can detect if the vase has been lifted.

When the vase is lifted, this will turn on an alarm and a motor which closes the shutter on the gallery door.


There is also a master switch to turn the whole system on and off.

Selecting from the elements given below, draw a **block diagram** of an electronic solution for this system.

On your diagram, clearly indicate the input, process and output sections of your solution.

NOT XOR master pressure temperature gate gate switch sensor sensor (logic 0 with (logic 1 when (logic 1 when hot) closed) pressure) NOR **AND** alarm LED shutter gate gate motor (requires a (requires a logic 1 to logic 1 to (requires a turn on) turn on) logic 0 to turn on)

The stripboard plan below shows a component (top) view of a circuit with the following layout.

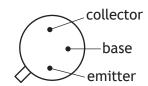
Component data

 TR_1 and TR_2 — BFY51 npn transistors

LD₁ — 5 mm standard led (red)

LDR — ORP12 light dependent resistor

 R_1 — carbon film 10 K 0.25 w


 R_2 — carbon film 6K8 0.25 w

 R_3 — carbon film 270 R 0.25 w

SW — SPST switch (on/off switch)

Draw a circuit diagram for this circuit. Each component must be labelled.

 TR_1 and TR_2 pin connections

11. (continued)

[END OF QUESTION PAPER]

ADDITIONAL SPACE FOR ANSWERS

Additional truth table for question 4(a)

Α	В	Output
0	0	
0	1	
1	0	
1	1	

Additional truth table for question 4(c)

A	В	С	D	E	Z
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

ADDITIONAL SPACE FOR ANSWERS

page 17

ADDITIONAL SPACE FOR ANSWERS

page 18

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

page 19

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

page 20