
1

Course report 2024

Advanced Higher Computing Science
This report provides information on candidates’ performance. Teachers, lecturers and

assessors may find it useful when preparing candidates for future assessment. The report is

intended to be constructive and informative, and to promote better understanding. You

should read the report with the published assessment documents and marking instructions.

We compiled the statistics in this report before we completed the 2024 appeals process.

2

Grade boundary and statistical information

Statistical information: update on courses

Number of resulted entries in 2023: 665

Number of resulted entries in 2024: 705

Statistical information: performance of candidates

Distribution of course awards including minimum mark to achieve each grade

A Number of
candidates

187 Percentage 26.5 Cumulative
percentage

26.5 Minimum
mark
required

93

B Number of
candidates

155 Percentage 22 Cumulative
percentage

48.5 Minimum
mark
required

79

C Number of
candidates

148 Percentage 21 Cumulative
percentage

69.5 Minimum
mark
required

66

D Number of
candidates

111 Percentage 15.7 Cumulative
percentage

85.2 Minimum
mark
required

52

No
award

Number of
candidates

104 Percentage 14.8 Cumulative
percentage

100 Minimum
mark
required

N/A

We have not applied rounding to these statistics.

You can read the general commentary on grade boundaries in the appendix.

In this report:

 ‘most’ means greater than 70%

 ‘many’ means 50% to 69%

 ‘some’ means 25% to 49%

 ‘a few’ means less than 25%

You can find statistical reports on the statistics and information page of our website.

https://www.sqa.org.uk/sqa/48269.8311.html

3

Section 1: comments on the assessment

Question paper

The question paper largely performed as expected. Feedback indicated it was fair and

accessible for candidates; however, a few centres focused on the reintroduction of

mandatory integration in the optional sections. Despite this, most candidates understood

what was required, and completed the mandatory and chosen optional sections in the

allocated time.

In the question paper, 54% of candidates completed the ‘Database design and development’

section, while 46% completed the ‘Web design and development’ section.

The overall performance of candidates who attempted questions in ‘Web design and

development’ was better than the performance of the candidates who attempted ‘Database

design and development’. This was observed in the questions common to each section as

well as the specialist questions.

Most questions performed as expected, with the C-level questions at the start of each

section helping candidates to focus on the section’s specialist content before tackling more

demanding problem-solving questions.

However, feedback and statistical data on the integrated questions in the optional sections

indicated that some candidates were not prepared for these questions. While these were

valid questions, we considered candidates’ level of engagement with them when we set

grade boundaries. We adjusted the grade boundaries for C and A grades by 1 mark to take

account of the new assessment approach.

Project

Revisions to the coursework assessment task published in September 2023 aimed to clarify

the evidence requirements for each type of project by providing detailed evidence checklists

for candidates. Although there were improvements in the evidence presented in the ‘Testing’

section, overall, the evidence submitted suggested that candidates did not use the checklists

and some candidates continued to provide incomplete evidence of design and

implementation.

Many projects that candidates attempted were overly complex, with over 30, 40 or, in a few

cases, 50 requirements being identified at the analysis stage. As a result, the volume of

evidence candidates presented was excessive, sometimes amounting to well over 300

pages. Having so many requirements makes it difficult, if not impossible, to track each

requirement through the remaining stages of development. As a result, these candidates

were unable to access all the marks available as their evidence could not be judged to be

‘complete’ or ‘almost complete’ in relation to the problem they set out to analyse.

4

Section 2: comments on candidate performance

Areas that candidates performed well in

Question paper

Software design and development

Question 2(b): Most candidates were able to correctly indicate the value of the

pointer of each node in the sorted list.

Question 3(a): Most candidates were able to define a 2-D array structure by correctly

indicating its data type and dimensions.

Question 3(b): Most candidates correctly assigned the value to the appropriate

element.

Question 5(a): Many candidates were able to accurately explain the use made of

overriding to redefine the calcArea() method of each subclass.

Question 5(b): Although some candidates omitted detail of the default value assigned

to the instance variable area by the constructor method of the

Rectangle class, many candidates were able to partially explain the

effect of the code provided in 5(b)(i). Most candidates correctly stated

the output produced by the code in 5(b)(ii).

Question 5(c)(i): Most candidates correctly identified that the code would set the fill

colour of the roof to red.

Question 5(d): Most candidates were able to write the code needed to implement

steps 4 and 8 of the design.

Database design and development

Question 7(a)(b): Most candidates showed an understanding of entity types and many

were awarded at least 1 mark for describing the relationship

participation between the actor and role entities.

Question 8(a): Many candidates correctly stated ‘technical’ as the type of feasibility

study.

Question 8(b): Many candidates were able to produce an accurate UML use case

diagram to represent the appointments system.

Question 8(e): Most candidates were able to identify the use made of the BETWEEN

operator.

Question 8(f): Most candidates stated the correct output from the subquery and the

query.

Web design and development

Question 10(a)(b): Many candidates were able to write the correct HTML statement.

Question 11(a): Most candidates stated ‘technical’ as the type of feasibility study.

Candidates who completed the ‘Web design and development’ section

performed better in this question than candidates who answered 8(a)

in ‘Database design and development’.

Question 11(b): Many candidates were able to produce an accurate UML use case

diagram to represent the website.

Question 11(c)(i): Many candidates were able to provide the missing pseudocode

needed to complete the design.

5

Question 11(c)(ii): Most candidates wrote the correct PHP code needed to assign the

submitted data to PHP variables.

Question 11(d)(i): Many candidates correctly explained that a session variable is

necessary to allow the entered email to persist on additional pages of

the website.

Question 11(e)(i): Many candidates identified the username for this database

connection.

Question 11(f)(i): Most candidates were able to describe the purpose of the design

correctly.

6

Areas that candidates found demanding

Question paper

Software design and development

Question 1: Many candidates did not correctly state the three comparisons

required to locate ‘Sycamore’ using a binary search.

Question 2(a): Many candidates did not identify the value that would be stored in the

head pointer.

Question 4(a): Most candidates did not get full marks for this question, with many

incorrectly describing end-user or acceptance testing. Some

candidates explained how the persona and test case in the description

would be used to carry out final testing of the appointment system.

Question 4(b): Many candidates did not identify perfective maintenance with an

appropriate justification.

Question 5(c)(ii): Most candidates incorrectly stated that the method had not been

defined. Only a few candidates were able to explain that the element

list[8] is an object belonging to the Shape superclass, and

therefore were not able to access a method that belongs to the

Circle subclass.

Question 6(b)(i): Many candidates did not provide the pseudocode needed to complete

the insertion sort algorithm. A few candidates did, however, receive

marks for incomplete designs.

Database design and development

Question 8(c): Many candidates did not accurately describe two benefits of using a

surrogate key for the stated entity, with a number making inaccurate

claims about the use of a surrogate key.

Question 8(d): Although a few candidates received 1 mark for the correct subquery,

many candidates did not complete the SQL query using the EXISTS

operator with the subquery.

Question 8(g): Most candidates did not provide either the action or method

attributes needed to complete the code. This question also had a low

response rate compared with the rest of the paper.

Web design and development

Question 11(d)(ii): While many candidates could explain why a session variable is

necessary in 11(d)(i), only some could describe the use made of the

session variable on the ‘View Climbs’ page.

Question 11(f)(ii): Most candidates did not identify a potential problem with the design at

line 5. This question also had a low response rate compared with the

rest of the paper.

7

Areas that candidates performed well in or found demanding in the
project

Stage 1: Analysis

Description of problem, UML use case diagrams and project plan for each stage

Most candidates provided accurate descriptions of the constraints on the development, and

many used UML use case diagrams correctly to illustrate how end-users and external

databases would interact with the system. However, some problem descriptions lacked

sufficient detail of the relevant Advanced Higher and integrative concepts for the type of

project. The project plans produced by many candidates omitted details of essential

subtasks for both the design and implementation stages of the development.

Requirements specification

While most candidates received at least 2 marks for their requirements specification, many

projects were overly complex and generated an excessive number of requirements. It was

extremely difficult for these candidates to ensure that each requirement was addressed

appropriately at each subsequent stage of the development process. In addition, many

candidates’ end-user requirements focused more on aesthetics than the requirements

identified in the UML use case diagrams.

Stage 2: Design

Design of Advanced Higher concepts and integration

For projects that required integration with a database, the design of integration was much

improved since last year, with more candidates providing complete and accurate evidence of

database design in the form of entity-relationship diagrams and data dictionaries.

Refinements of individual processes were used to indicate where connections to the

database and database queries would be needed, and query designs were provided to

indicate their intended purpose.

Many candidates who tackled software development projects continued to present pages of

code, or reverse engineered code that they rewrote and presented as the design of their

Advanced Higher concepts, integration and functional requirements. By contrast, most

candidates who tackled projects with a focus on database and web development presented

small sections of pseudocode that outlined the sequence of actions needed to implement

each individual process.

Some candidates who completed software development projects provided a top-level design

of their proposed solution that indicated data flow, but in general, many candidates did not

include this evidence. When refining the Advanced Higher search or sort algorithm, some

candidates applied the algorithm to a 1-D array rather than the Advanced Higher data

structure that had been identified in their problem description. In addition, many candidates

relied on frameworks that automatically generated the UML class diagram and made no

further reference to the array of objects in the remainder of their design. It was clear that

these candidates had no intention of applying the Advanced Higher algorithm to this data

structure.

8

For most candidates who completed a web project, the planned use of session variables

was unclear and, in many cases, contradictory. For example, wireframe designs indicated

personalised welcome messages while the refinement of the login process either made no

mention of the session variables needed to display those messages or suggested that

different session variables would be used. Although most candidates did indicate the effect

that media queries would have, either in the form of wireframes or in a written description,

some candidates did not indicate when the media query would be triggered. Similarly, many

candidates did not provide a site navigation structure to show the planned pages of the site

and indicate what navigation would be possible between the pages. The few navigational

structures that were submitted often omitted planned redirects and links indicated elsewhere

in the design.

User interface design

Many candidates received good marks for the design of their user interface. Candidates

used wireframes to indicate the intended layout of input and output, and described the

underlying processes executed when selecting buttons and menu options.

Although many candidates did attempt to show the input validation that would be carried out

as part of their user interface design, most candidates omitted the details needed to show

the error messages that would be produced by that validation.

Design matches requirements specification

As a result of including so many requirements at the analysis stage, many candidates did not

provide sufficient evidence to show that they had considered all requirements at the design

stage.

Stage 3: Implementation

Implemented Advanced Higher concepts, integration and user interface

Most candidates gained good marks for the implementation of the Advanced Higher

concepts and the implemented user interface, with many candidates also gaining good

marks for the implementation of integration.

Most candidates who chose to implement a database did not provide evidence of the initial

contents of the implemented table or tables, and the data used to populate them before any

queries were executed. In addition, many candidates failed to submit evidence of the

structure of the implemented table or tables to show that the implementation matched the

design indicated in the data dictionary.

Although most candidates who implemented an Advanced Higher search and/or sort

algorithm submitted screenshots to show the results of how the algorithm performed, they

did not provide the ‘before’ evidence of the data searched or the unsorted data, which is

needed to show that the algorithm worked correctly.

Log of ongoing testing

Some candidates failed to provide any evidence of the ongoing testing that would have been

carried out automatically throughout the implementation stage. Where evidence was

9

provided, it was often incomplete and omitted many of the important Advanced Higher

concepts, integrative components and functional requirements that had been indicated at the

analysis and design stages.

Stage 4: Testing

Most candidates gained good marks for carrying out all tests listed in their test plan and

providing screenshot evidence of them. However, a few candidates provided no description

of the results of testing based on the test cases provided in their test plan.

Candidates who had included requirements at the analysis stage that focused on aesthetics,

such as ‘clutter-free layout’ and ‘easy to use’, encountered difficulty generating evidence of

final testing, which they are expected to carry out and evaluate themselves.

Stage 4: Evaluation

Fitness for purpose, maintainability and robustness

Most candidates who referred to each of the requirements identified at the analysis stage

received 1 mark for an accurate description of their solution’s fitness for purpose.

In many cases, the descriptions of fitness for purpose lacked sufficient detail at Advanced

Higher level and lacked any qualitative evaluation of the solution. Similarly, many

evaluations of maintainability did not explain how features of the solution would aid (or

hinder) future maintenance tasks, and many evaluations of robustness included inaccurate

claims that all input had been validated when there was clear evidence in the solution that

this was not the case.

10

Section 3: preparing candidates for future
assessment
Teachers and lecturers must ensure that they are familiar with the current version of the

course specification. It is essential that teachers and lecturers are aware of the requirements

for integration within the question paper that this document outlines.

Question paper

Teachers and lecturers should ensure that candidates are familiar with the Advanced Higher

standard algorithms, binary search, bubble sort and insertion sort. In particular, candidates

should be aware of the distinguishing features of each algorithm and be able to demonstrate

their understanding of them by applying them to given lists of data values. Similarly,

candidates should be familiar with the operation of single and double linked lists, and able to

demonstrate that understanding by applying it to linked lists consisting of values and

pointers.

Teachers and lecturers should ensure that candidates are familiar with the correct

terminology for, and are able to recognise and accurately describe, component testing,

end-user testing, integrative testing, final testing and usability testing based on prototypes.

Candidates should be able to accurately describe the use of personas and test cases in

relation to final and usability testing.

Teachers and lecturers should ensure that candidates are familiar with the correct

terminology for adaptive, corrective and perfective maintenance. Similarly, centres should

also ensure that candidates are familiar with the correct terminology for economic, time,

legal and technical feasibility studies.

Teachers and lecturers should advise candidates to pay close attention to any UML class

diagram that lists all the methods available to the main program code. Although program

code will be presented, it is likely that the code will be incomplete. It is vital, therefore, that

candidates understand the relationship between the UML class diagram and the code

presented. Teachers and lecturers should also ensure that candidates are aware of how

polymorphism applies to an array of superclass objects. Although individual elements of a

superclass array may reference a variety of different types of objects (including superclass

objects and objects of different subclasses), those superclass array elements can only

access methods that have been defined for the superclass.

Overall, candidates coped well with the problem-solving questions that required them to

design algorithms for unseen tasks and processes such as those in question 6. Teachers

and lecturers should continue to encourage candidates to attempt these more challenging

questions, as statistical evidence shows that most candidates receive partial marks for

correct aspects of their design, even when those designs may be incomplete or do not

provide a fully working solution.

For ‘Database design and development’, teachers and lecturers should ensure that

candidates can accurately describe the benefits of using a surrogate key to replace a

compound key. When preparing candidates for section 2 of the question paper, they should

ensure that candidates are familiar with the skills, knowledge and understanding needed to

11

design and implement HTML forms. There is an example of this requirement in question 7(f)

of the specimen question paper.

For ‘Web design and development’, teachers and lecturers should ensure that candidates

are familiar with all the PHP coding and mysqli functions required at Advanced Higher level.

Candidates should understand the purpose of each mysqli function and know when it can be

used. At the same time, they should ensure that candidates have opportunities to read and

explain unfamiliar pseudocode used to design server-side processes that would be

implemented using these mysqli functions. When preparing candidates for section 3 of the

question paper, centres should ensure that candidates are familiar with the skills, knowledge

and understanding needed to design and implement SQL queries. There is an example of

this requirement in question 10(d)(i) of the specimen question paper.

Project

Coursework assessment task

Centres must ensure that they are using the correct version of the coursework assessment

task. This includes evidence checklists for each type of project. These provide details of the

evidence required at each stage of the project. Unfortunately, some centres continue to refer

candidates to outdated project guidelines and sample projects. Candidates who use the

appropriate documents are less likely to spend time generating evidence that receives no

marks, such as scope and boundaries, feasibility studies, user surveys, lists of inputs,

processes and outputs, and progress diaries.

Project selection

When candidates are selecting projects, teachers and lecturers should advise them to be

realistic about the extent of what they can achieve working independently. They should

ensure that candidates do not embark on overly complex projects that generate an

excessive number of requirements. Projects with a limited number of requirements will help

candidates to keep track of them and ensure that they can access all marks in each stage of

the development. For session 2024–25, the coursework assessment task has been updated

to state that projects must have no more than 6 end-user requirements and 24 functional

requirements.

The Advanced Higher Computing Science course is a general course that introduces

candidates to advanced coding skills in three areas: software design and development,

database design and development, and web design and development. Although candidates

must focus on one area of the course and integrate with one other area, the course is not

intended to be a specialist web development or games development course. Teachers and

lecturers should discourage candidates from developing solutions that a team of professional

developers would normally carry out.

Teachers and lecturers should encourage candidates to consider projects that would enable

them to demonstrate coding skills gained as part of the Advanced Higher course and focus

on the functionality of their solutions, rather than the usability of the interface, which is not

assessed in the Advanced Higher project. Some candidates opted to integrate software

design and development with web design and development. Given that all IDEs provide a

central interface to edit, compile and debug code, and that there are no marks available for

12

the user-friendliness of the solution, there is no need to send program output to a separate

web interface. Since most of these candidates relied on a framework to handle the

complexities associated with the connectivity across the two technologies, they did not

provide any design evidence to show that they understood how the connectivity would be

achieved. Additionally, since the technical details of the implementation were largely hidden

by the framework used, it was often difficult to award full marks for implementation of the

connection and integration.

Centres should remind candidates that all inputs to their solution must be validated, and

since this is a mandatory requirement of all Advanced Higher projects, details of the

intended input validation must be provided in the functional requirements at the analysis

stage. Checking whether a user is already registered is user authentication and not input

validation; the input validation that is required in the Advanced Higher project should build on

the validation techniques introduced in the National 5 and Higher Computing Science

courses.

While user authentication is an importance process carried out by many systems, it is an

additional requirement of the Advanced Higher project that does not meet the need to

validate all input values.

Presentation of evidence

When preparing their project evidence for submission, candidates should use the

subheadings in the evidence checklists in the project assessment task to organise and

present their evidence. To make it possible for markers to track each requirement at each

stage of the development, candidates must number all pages in their submission. Code must

be printed in a font that is large enough to be easily read by markers who can only award

marks if they identify Advanced Higher concepts, integration and listed requirements in the

implemented code. To assist with this, candidates should highlight their code to show where

to find these features. Screen shots of code must be large enough for markers to read them

easily, and, where possible, candidates should avoid using a black background. Where

screen shots of the user interface are used to support evidence of testing, it should be

possible for markers to read input values and output messages in those screen shots without

needing to magnify the page. For session 2024–25, a template for gathering evidence will be

available on the Advanced Higher Computing Science subject page. This is designed to help

candidates present their evidence and to track their requirements through each stage of the

development.

Analysis

Centres should encourage candidates to use a UML use case diagram early in the analysis

stage to help them to identify the end-user requirements they will need in their solution.

There is no need for candidates to carry out user surveys to help identify them. Once

completed, the UML use case diagram should provide candidates with a high-level

understanding of how end-users of the system will interact with it, and the tasks they should

be able to perform. Identifying the use cases needed to complete the diagram should be the

first step in helping candidates to identify several of the back end functional requirements

that will be needed to support the end-user requirements. In addition, the UML use case

diagram should also show how the system will interact with external databases and files,

which should help candidates to identify additional functional requirements.

13

In the requirements specification, candidates should specify all end-user requirements

identified in their UML use case diagram. It may be helpful for candidates to use the heading

‘End-users of the system should be able to’ and follow this with the list of tasks that

end-users should be able to perform using the completed system. Tackling the end-user

requirements in this way would avoid all end-user requirements that are concerned with the

aesthetics and usability of the solution, which candidates can find difficult to test and

evaluate. Centres should remind candidates that the functional requirements specified in the

requirements specification must include all mandatory Advanced Higher and integrative

requirements listed in the coursework assessment task.

Design

As part of their design evidence, candidates who attempt a software development project are

expected to indicate the intended structure of any Advanced Higher data structure they will

use in their solution. This data structure may be a 2-D array, an array of records or an array

of objects. In addition, the design of the Advanced Higher search or sort algorithm must

clearly indicate the planned use of this Advanced Higher data structure; generic algorithms

copied from class notes or applied to a 1-D array, or parallel 1-D arrays, are not appropriate.

Implementation

In software development projects, candidates must provide evidence to show that any

Advanced Higher algorithm coded in the solution is working correctly. Although most

candidates remember to include a screenshot of the sorted output produced by the sort

code, they forget about the need to evidence the unsorted data — without this, markers

cannot award full marks. Similarly, evidence of a working binary search is incomplete unless

it includes a screenshot showing the full list of values that has been searched by the code.

For all projects that implement a database, candidates must submit evidence to show that

the structure of the implemented table or tables matches the structure indicated in the data

dictionary produced at the design stage. This evidence can be in the form of the SQL code

or screenshots of the implemented table showing the necessary structural details. In

addition, these candidates must also present evidence to show that all queries are fit for

purpose. Teachers and lecturers should advise candidates to include evidence of the initial

values stored in tables before any of the implemented queries are executed (for example, a

list of quiz questions or a list of stock items). This advice applies even if the tables initially

have no records (for example, a member table with no records or a high score table with no

entries). This evidence could be the SQL code used to populate the tables, or screenshots

showing the initial values or empty tables. Candidates should also include screenshot

evidence to show that all implemented queries are fit for purpose.

They should ensure that:

 evidence for INSERT queries shows additional records in the table

 evidence for UPDATE queries shows that existing records in the table have been edited

 evidence for DELETE queries shows that records have been removed from the table

 evidence for SELECT queries shows that results returned have been retrieved from the

underlying table

14

Ongoing testing

Throughout the implementation of their solution, candidates are expected to maintain a log

of ongoing testing. Although it is not necessary for candidates to log every minor syntax error

or mismatch that they encounter, they are expected to note when important components are

added to the solution. For example, whenever a mandatory Advanced Higher concept or

functional requirement is implemented, it is expected that candidates would automatically

run their code to check that this additional functionality is working correctly. Evidence of that

testing should be recorded in the log of ongoing testing, even when no issues were

encountered. Depending on the sequence of implementation, it may be necessary for

candidates to add temporary print lines or stubs/driver code to test certain sections of the

solution; examples of this would be very good evidence to include in the log. Where

possible, candidates should be encouraged to make use of breakpoints or watchpoints to

pause the code during execution to check what values are being stored internally — screen

shots of this would be very good evidence that could be used in the log of ongoing testing or

as evidence of final testing. Candidates should add to the log a brief note of any issues

encountered as components are implemented, together with the full details of any references

that were used to resolve the problem. If candidates resolved issues themselves, or

encountered no difficulties implementing a particular component, they should record this in

the log.

Testing

Teachers and lecturers should remind candidates of the need to provide a description of at

least one persona for the purposes of final testing. The persona should be a realistic

character that represents a typical end-user of the completed system. The description of the

persona should provide background details such as name, age and occupation, and,

importantly, should indicate their level of IT skills and knowledge.

Along with the persona, candidates should also provide test cases. These should outline

tasks that typical users of the system would carry out. Although it is not necessary to do so,

it is useful to include the test cases as part of the formal test plan. This not only ensures that

the tests are completed, but also generates evidence of testing that can be included in the

submission and helps candidates to report on the results of testing using the test cases.

Candidates should carry out final testing of the solution themselves. There is no need for

candidates to carry out end-user or usability testing. They should provide screen shot

evidence of each test in the test plan, and where appropriate, it should indicate input values

stated in the test plan together with predicted validation error messages.

Evaluation

In their evaluations of fitness for purpose, candidates are expected to discuss the extent to

which their solution matches all the requirements listed at the analysis stage. Evaluations of

maintainability should refer to aspects of their code that candidates feel would help (or

indeed hinder) specific types of maintenance that may be necessary in the future. When

discussing the robustness of their solution, candidates are expected to refer to the input

validation routines incorporated within the solution, and to the results of testing of those

aspects.

15

Appendix: general commentary on grade
boundaries
SQA’s main aim when setting grade boundaries is to be fair to candidates across all subjects

and levels and maintain comparable standards across the years, even as arrangements

evolve and change.

For most National Courses, SQA aims to set examinations and other external assessments

and create marking instructions that allow:

 a competent candidate to score a minimum of 50% of the available marks (the notional

grade C boundary)

 a well-prepared, very competent candidate to score at least 70% of the available marks

(the notional grade A boundary)

It is very challenging to get the standard on target every year, in every subject, at every

level. Therefore, SQA holds a grade boundary meeting for each course to bring together all

the information available (statistical and qualitative) and to make final decisions on grade

boundaries based on this information. Members of SQA’s Executive Management Team

normally chair these meetings.

Principal assessors utilise their subject expertise to evaluate the performance of the

assessment and propose suitable grade boundaries based on the full range of evidence.

SQA can adjust the grade boundaries as a result of the discussion at these meetings. This

allows the pass rate to be unaffected in circumstances where there is evidence that the

question paper or other assessment has been more, or less, difficult than usual.

 The grade boundaries can be adjusted downwards if there is evidence that the question

paper or other assessment has been more difficult than usual.

 The grade boundaries can be adjusted upwards if there is evidence that the question

paper or other assessment has been less difficult than usual.

 Where levels of difficulty are comparable to previous years, similar grade boundaries are

maintained.

Every year, we evaluate the performance of our assessments in a fair way, while ensuring

standards are maintained so that our qualifications remain credible. To do this, we measure

evidence of candidates’ knowledge and skills against the national standard.

During the pandemic, we modified National Qualifications course assessments, for example

we removed elements of coursework. We kept these modifications in place until the 2022–23

session. The education community agreed that retaining the modifications for longer than

this could have a detrimental impact on learning and progression to the next stage of

education, employment or training. After discussions with candidates, teachers, lecturers,

parents, carers and others, we returned to full course assessment for the 2023–24 session.

SQA’s approach to awarding was announced in March 2024 and explained that any impact

on candidates completing coursework for the first time, as part of their SQA assessments,

would be considered in our grading decisions and incorporated into our well-established

https://www.sqa.org.uk/sqa/109708.html

16

grading processes. This provides fairness and safeguards for candidates and helps to

provide assurances across the wider education community as we return to established

awarding.

Our approach to awarding is broadly aligned to other nations of the UK that have returned to

normal grading arrangements.

For full details of the approach, please refer to the National Qualifications 2024 Awarding —

Methodology Report.

https://www.sqa.org.uk/sqa/files_ccc/nq2024-awarding-methodology-report.pdf
https://www.sqa.org.uk/sqa/files_ccc/nq2024-awarding-methodology-report.pdf

