

Applications of Mathematics (Higher): question paper

Candidate evidence

Candidate 1 evidence Question 1(a)

- 1. Bailey takes out a loan for £4000 with an annual effective rate of interest of 29.9%.
 - (a) Calculate the monthly effective rate of interest.

$$\left(1+\frac{29.9}{100}\right)^{\frac{1}{12}}-1\times100$$

= 2.20%

Bailey makes level monthly repayments of £250 at the end of each month.

Candidate 2 evidence Question 1(a)

- 1. Bailey takes out a loan for £4000 with an annual effective rate of interest of 29.9%.
 - (a) Calculate the monthly effective rate of interest.

29.9% = 12 = 2.5% 4000 × 1.025 = 4100

Candidate 3 evidence

Question 1(b)

Bailey makes level monthly repayments of £250 at the end of each month.

(b) Complete the following loan schedule for Bailey's loan to show the loan outstanding at the end of month 2.

2
_

Time (months)	Repayment (£)	Interest content of repayment (£) …	Capital content of repayment (£)	Loan outstanding (£)
0				4000.00
1	250.00	100.00	350.00	3650.00
2	250.00	91.25	341.25	3308.75

Candidate 4 evidence

Question 1(a) and (b)

(0.299) 治

=0.90%

- 1. Bailey takes out a loan for £4000 with an annual effective rate of interest of 29.9%.
 - (a) Calculate the monthly effective rate of interest.

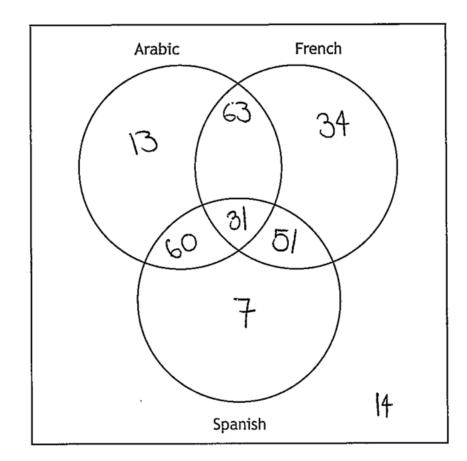
. . .

Bailey makes level monthly repayments of £250 at the end of each month.

(b) Complete the following loan schedule for Bailey's loan to show the loan outstanding at the end of month 2.

2

1


Time (months)	Repayment (£)	Interest content of repayment (£)	Capital content of repayment (£)	Loan outstanding (£)
0				4000.00
1	250.00	36	214	3786
2	250.00	34.67	Z15.93	3570.07

Space for working if required

Candidate 5 evidence

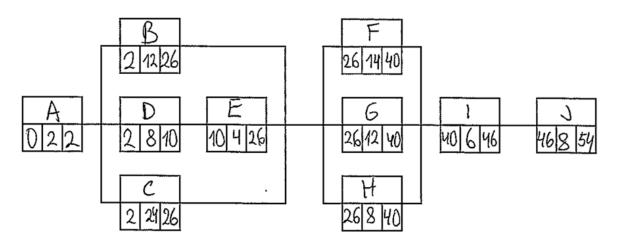
Question 2(a)

(a) Complete the Venn diagram to show this information.

Question 2(b)

(b) A student is selected at random.

Determine the probability that the student studies Spanish and Arabic, but not French.


$$\frac{60}{273} = 0.2197...$$

= 0.2

Candidate 6 evidence

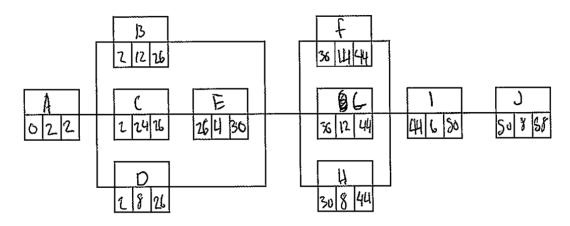
Question 3(a)


(a) Complete the PERT chart showing the earliest start time and the latest completion time for each task.

(An additional diagram, if required, can be found on page 21.)

Candidate 7 evidence

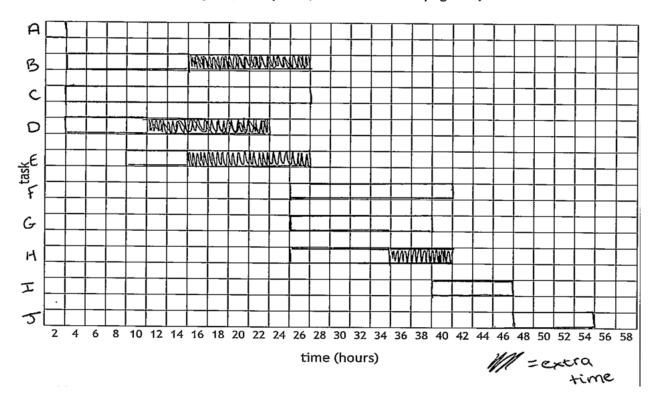
Question 3(b)



Candidate 8 evidence

Question 3(a)

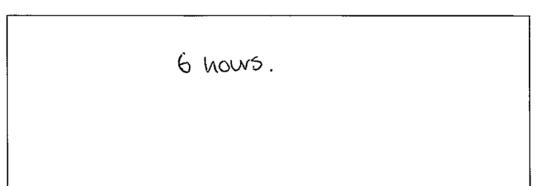
(a) Complete the PERT chart showing the earliest start time and the latest completion time for each task.


(An additional diagram, if required, can be found on page 21.)

Candidate 9 evidence

Question 3(b)

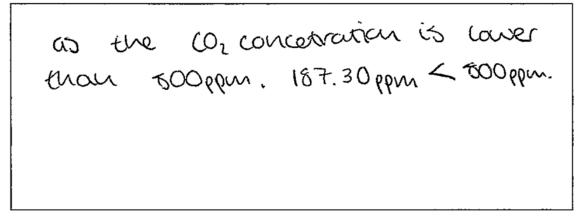
(b) Construct a Gantt chart without float times for this job.(An additional diagram, if required, can be found on *page 21*.)



Candidate 10 evidence

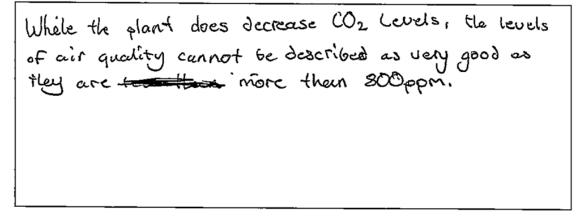
Question 3(d)

During the job there are difficulties disconnecting the propeller shaft coupling (task H).


(d) Determine the maximum time that can be taken to disconnect the propeller shaft coupling without delaying the total completion time of the job.

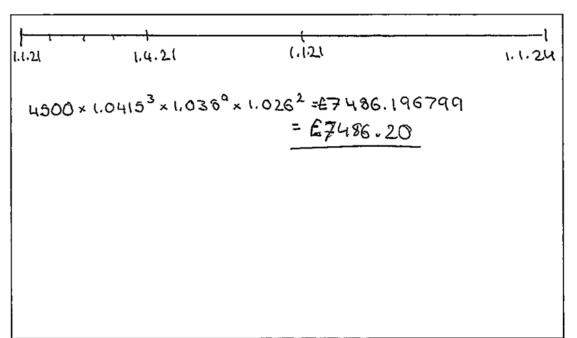
Candidate 11 evidence

Question 4(c)


(c) Explain whether the large Dracaena plants are effective at obtaining very good indoor air quality in the showroom.

Candidate 12 evidence

Question 4(c)


(c) Explain whether the large Dracaena plants are effective at obtaining very good indoor air quality in the showroom.

Candidate 13 evidence

Question 5(a)

(a) Calculate Ewa's balance on 1 January 2024.

:

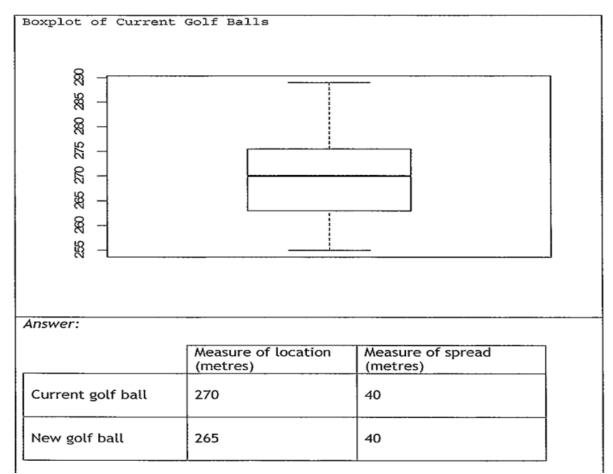
Candidate 14 evidence

Question 5(a)

(a) Calculate Ewa's balance on 1 January 2024.

 $4500 \times 1.00415'^{S} = F4758.41$ $4788.41 \times 1.041^{-942} = 54956.23$ $4956.23 \times 1.026^{2} = 55217.30$ $4500 \times 1.00415^3 = 4506.75$ $4506.75 \times 1.047^{-9/12} = 4664.70$ $4664.70 \times 1.026^2 = 54910.42$

Candidate 15 evidence


Question 6(a)(i)

(i)

Statistical software ou	itput:				
> summary(curren					
Min. 1st Qu.		Mean	3rd O	и. Max	κ.
255.0 263.0		270.3		.2 289	I
> <u>5</u> 205.0 > summary(new)					I
Min. 1st Qu.	Median	Mean	3rd Q	u. Max	
250.0 262.0					
>					
Answer:					
	Measure (metres)	of locat	ion	Measure ((metres)	of spread
Current golf ball	270.3			255-289	
New golf ball	267.5			250-289	
				•	

Candidate 16 evidence

Question 6(a)(i)

Candidate 17 evidence

Question 6(a)

(a) (i)

Chatistical software		
Statistical software of	output:	
> mean(current)		
[1] 270.275		
> sd(current)		
[1] 8.752985		
> mean(new)		
[1] 267.5		
> sd(new)		
[1] 9.896904		
Answer:		
	Measure of location	Measure of spread
	(metres)	(metres)
Current golf ball	270.275	8.752985
Current gott batt	270.275	0.752705
New golf ball	267.5	9.896904

Candidate 18 evidence

Question 6(a)(ii)

(ii)

Answer: The current golf ball has travelled more in the measure of location as 270.275>267.5. The new golf ball has travelled more in the measure of spread as 9.896904>8.752985.

Candidate 19 evidence

Question 6(a)(ii)

(ii)

Answer-The current ball on average reaches further distances than the new ball as seen from the difference in the mean and the median. The new ball also is less consistent on the distance travelled, and there is wider range of distances.

Candidate 20 evidence

Question 6(b)

(b)

Answer:

Null hypothesis:

H0: there is no difference in the distances travelled (in metres) between the current golf balls and the new golf balls.

Alternative hypothesis:

H1: there is a difference in the distances travelled (in metres) between the current golf balls and the new golf balls.

Candidate 21 evidence

Question 6(b)

(b)

Answer:

Null hypothesis: There is no difference between the two types of balls in the distance travelled

Alternative hypothesis: New ball travels further distances than the current ball

Candidate 22 evidence

Question 6(c)(ii)

p-value = 0.188

(ii)

```
Statistical software output:
    t.test(current, new)
    Welch Two Sample t-test
data: current and new
    t = 1.3284, df = 76.852, p-value = 0.188
    alternative hypothesis: true difference in means is not equal
    to 0
95 percent confidence interval:
    -1.384937    6.934937
sample estimates:
    mean of x mean of y
    270.275    267.500
Answer:
```

Candidate 23 evidence

Question 6(c)(i)(ii)

(c) (i)

Answer: Paired t-test

(ii)

```
Statistical software output:
> t.test(current, new, paired=TRUE)
Paired t-test
data: current and new
t = 1.277, df = 39, p-value = 0.2092
alternative hypothesis: true mean difference is not equal t
o 0
95 percent confidence interval:
-1.620536 7.170536
sample estimates:
mean difference
2.775
Answer:
```

p-value = 0.2092

Candidate 24 evidence

Question 6(c)(iii)

(iii)

Answer: The p-value is greater and bigger than 0.05 which means we do not reject the null hypothesis. And that there is no significant difference between the current and the new type of balls and the distance they travel.

Candidate 25 evidence

Question 6(c)(iii)

(iii)

Answer:

As the p-value is greater than 0.05 the null hypothesis can be rejected

Candidate 26 evidence

Question 7(a)

(a) Calculate Tom's net annual salary for the 2023/24 tax year, after all deductions including National Insurance.

4500 × 12 = {54,000 -11,787.48 = £42,201.52
4500 - 100 - 45 × 40 2 = 190 per month
90 x 9 = [810 + = [1080 national insurance
90 K 3 = J 270
54000 - 43,662 = flo 338 × 0.42 £4341.96
43662 - 25,688 = J17974 x 0.21 = 3774.54
25688 -14232 = \$10956 × 0.20 - f2191.2
14732-12:520 = 2162 × 0.19 = £410.28
[4341.96 + \$3774.54 + f 2191.2 + & 410.28
= flo 718,48 + 1000 = 11.788.48

Candidate 27 evidence

Question 7(a)

(a) Calculate Tom's net annual salary for the 2023/24 tax year, after all deductions including National Insurance.

4500 × 12 = 54000 54000 -510-518-548 43-281-82 = 0 0%: 12,570-0 410.78 19%: 14,732-12,570 = 2162 × 0.19 = 20 % : 25,688 - 14,732 = 10 956 x 0.20 = 2192.20 20%: 43,062 - 25688 = 17974 × 0.21 = 3768.87 42%: 54 000 - 43662 = 10 338 x0. 42 = 4341.96 10713.81 54000 - 10 = 376.92 127. : 4189-1048 = 3141 ×0.12 = 314.1 10%; 4189-1048 = 3141 × 0.10 691.02 54000 - 10 718.48 - 691.02 = 642 590.50

Candidate 28 evidence

Question 7(b)

(b) Determine whether Tom's gross monthly salary increased in line with the CPI.

Candidate 29 evidence

Question 7(b)

(b) Determine whether Tom's gross monthly salary increased in line with the CPI.

$$\frac{119.0}{4200} = 0.0283 = 2.831.$$

$$\frac{128.3}{4500} = 0.02851 = 2.851.$$
Yes, Tom's gross monthly salary has increased in line with the CPI as $2.851. > 2.837.$

Candidate 30 evidence

Question 8(b)(i) and (ii)

- (b) Calculate the expected cost of a delay using:
 - (i) only control measure 1

15000 + 24375 = 39375 \$9375 × 0.1 = £3<u>939-</u>50

(ii) only control measure 2.

16000 + 24375 = 40375 40375 × 0.25 = £10 0 93 .75

Candidate 31 evidence

Question 9(a)

Mortgage amount Annual effective interest rate				
Monthly effective interest rate	3.50% 0.29%			
Repayment (months)	60			
Level monthly repayment	£ 454.18		•	
Final repayment	£ 454.12			
Time (months)	Repayment (£)	Interest content of repayment (£)	Capital content of repayment (£)	Mortgage outstanding (£)
0				25,000.00
1	454.18	71.77	382.41	24,617.59
2	454.18	70.67	383.51	24,234.08
3	454.18	69.57	384.61	23,849.47

Mortgage Schedule				
		·		
	•			
Mortgage amount				
Annual effective interest rate	0.035			
Monthly effective interest rate	≃(1+C8)^(1/12)-1			
Repayment (months)	60			
Level monthly repayment	454.18			
Final repayment	=C75			
		Interest content of	Capital content	
e	Repayment	repayment	repayment	Mortgage outstanding
ths)	(£)	(£)	(£)	· (£)
				25000
	=\$C\$11	=ROUND(F15*\$C\$9,2)	=C16-D16	=F15-E16
	=\$C\$11	=ROUND(F16*\$C\$9,2)	=C17-D17	=F16-E17
	=\$C\$11	=ROUND(F17*\$C\$9,2)	=C18-D18	=F17-E18
, ,	=\$C\$11	=ROUND(F18*\$C\$9,2)	=C19-D19	=F18-E19
	=\$C\$11	=ROUND(F19*\$C\$9,2)	=C20-D20 '	=F19-E20
	=\$C\$11	=ROUND(F20*SC\$9.2)	=C21-D21	=F20-E21
				=F21-E22

Candidate 32 evidence

Question 9(a)

Mortgage Schedule				
Mortgage amount	£ 25,000.00			
Annual effective interest rate	3.50%			
Monthly effective interest rate	0.29%			
Repayment (months)	60			
Level monthly repayment	£ 416.67			
Final repayment	£ 416.67			
		Interest	Capital	
		content of	content of	Mortgage
Time	Repayment	repayment	repayment	outstanding
(months)	(£)	(£)	(£)	(£)
0	-			25,000.00
1	416.67	72.92	343.75	24,583.33
2	416.67	71.70	344.97	24,166.67
3	416.67	70.49	346.18	23,750.00

Mortgage Schedule				
Mortgage amount				
Annual effective interest rate	0.035			
Monthly effective interest rate	=C8*1/12			
Repayment (months)	60			
Level monthly repayment	=C7/C10			
Final repayment	≖F74			
Time	Repayment	Interest content repayment	repayment	Mortgage outstanding
nonths)	(£)	(£)	(£)	(£)
	L			25000
	=\$C\$11	=(F15*\$C\$9)	=C16-D16	=F15-C16
	=\$C\$11	=(F16*\$C\$9)	=C17-D17	=F16-C17
	=\$C\$11	=(F17*\$C\$9)	=C18-D18	=F17-C18

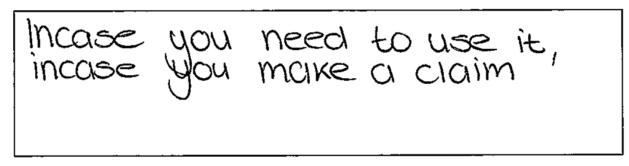
Candidate 33 evidence

Question 9(b)(i)

(b) (i) State one advantage of having a high excess amount on your insurance policy.

reduces the amount you pay each year if payed on time

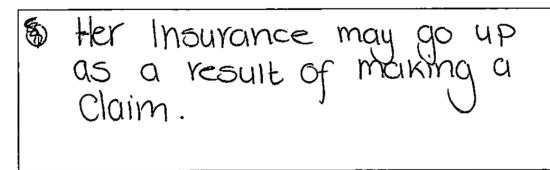
Candidate 34 evidence


Question 9(b)(i)

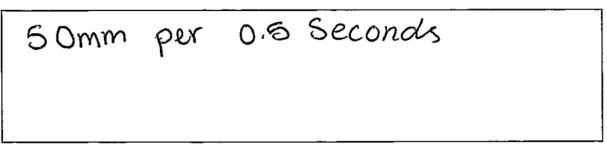
(b) (i) State one advantage of having a high excess amount on your insurance policy.

Candidate 35 evidence

Question 9(b)(i)


(b) (i) State one advantage of having a high excess amount on your insurance policy.

Candidate 36 evidence


Question 9(b)(ii)

(ii) Explain why Esme may choose not to make a claim using her insurance policy.

Candidate 37 evidence Question 10(b)

(b) Determine the rate at which each can is filled with carbonated fruit drink. Your answer must include appropriate units.

Candidate 38 evidence Question 10(b)

(b) Determine the rate at which each can is filled with carbonated fruit drink. Your answer must include appropriate units.

50 mininerres per hauf second 50 mmphs

Candidate 39 evidence

Question 10(c)

(c) Estimate how many cans the factory can fill in one week.State any assumptions you have made.

3

```
3 seconds to line a can

Staff worn 5 days per ween for 9 hrs

9 \times 60 = 540 sinutes \times 60 = 32,400 seconds

32400 - 3 = 10800

10,800 \times 5 = 04,000 cans per olay

54,000 \times 5 = 2.70,000 cans per ween
```

Candidate 40 evidence

Question 10(c)

(c) Estimate how many cans the factory can fill in one week. State any assumptions you have made.

assumptions: Staff work 9-5 monday to friday. They also have a one hour lunch break. Cans are 330 militres each 5 are filled at a time it takes 3 Seconds to fill a can 330×3×5×7×5=173250 cans per week.